上课笔记,主要是理思路,内容并不全
概率名词
类别-样本
- 联合概率密度
- 总体概率密度
- 类条件概率密度:以类为条件,样点的概率
- 先验概率:对类的总体认识
- 后验概率:从样本得到的对类的认识
贝叶斯决策理论介绍
映射
一类样本被映射到整个 R d R^d Rd空间,在某些区域概率密度较大
最小错误率贝叶斯决策
根据后验概率进行的判别,可以证明具有最小的错误率
决策错误率
任何决策都有正确概率和错误概率
所有类都可能映射到判决空间样点x,x的矢量值是唯一判据
所以任何映射到x的情况都要只判为某一类w,而不能判决为几类;其他的类映射到x就发生了判断错误
在x点处选择后验概率最大的类使得这一点处正确率最大,错误率最小
最小错误率
求决策规则,使下式(依赖后验概率的错误率计算)最小
∫
P
(
e
∣
x
)
p
(
x
)
d
x
\int P(e|x)p(x)dx
∫P(e∣x)p(x)dx
要让平均最小,只要让每个点最小
如果认为
p
(
x
)
p(x)
p(x)不含有决策信息,选择最大的后验概率对应的类作为判决结果
根据贝叶斯公式,利用先验后验之间的关系,只要让先验概率与类条件密度的乘积最大
最优性和瑕疵
所有可能决策方式中,最小错误率贝叶斯真的具有最小的错误率,但是不一定是综合的最好解决方案
贝叶斯决策最大的问题是如何得到合理的先验概率