模式识别week2


上课笔记,主要是理思路,内容并不全

概率名词

类别-样本

  • 联合概率密度
  • 总体概率密度
  • 类条件概率密度:以类为条件,样点的概率
  • 先验概率:对类的总体认识
  • 后验概率:从样本得到的对类的认识

贝叶斯决策理论介绍

映射

一类样本被映射到整个 R d R^d Rd空间,在某些区域概率密度较大

最小错误率贝叶斯决策

根据后验概率进行的判别,可以证明具有最小的错误率

决策错误率

任何决策都有正确概率和错误概率

所有类都可能映射到判决空间样点x,x的矢量值是唯一判据

所以任何映射到x的情况都要只判为某一类w,而不能判决为几类;其他的类映射到x就发生了判断错误

在x点处选择后验概率最大的类使得这一点处正确率最大,错误率最小

最小错误率

求决策规则,使下式(依赖后验概率的错误率计算)最小
∫ P ( e ∣ x ) p ( x ) d x \int P(e|x)p(x)dx P(ex)p(x)dx
要让平均最小,只要让每个点最小

如果认为 p ( x ) p(x) p(x)不含有决策信息,选择最大的后验概率对应的类作为判决结果
根据贝叶斯公式,利用先验后验之间的关系,只要让先验概率与类条件密度的乘积最大

最优性和瑕疵

所有可能决策方式中,最小错误率贝叶斯真的具有最小的错误率,但是不一定是综合的最好解决方案

贝叶斯决策最大的问题是如何得到合理的先验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值