cascade.xml参数解析

上图显示的参数,大多与opencv_traincascade.exe的输入参数已知。其中maxCatCount和featSize定义如下

        maxCatCount:int maxCatCount; // 0 in case of numerical features
  featSize:int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features

feature结构对于上两值默认的是:

        CvFeatureParams::CvFeatureParams() : maxCatCount( 0 ), featSize( 1 ) {...};

其中

      LBP:maxCatCount = 256;

      HOG:featSize = N_BINS * N_CELLS;

其他情况均用默认值。





关于maxWeakCountstageThresholdweakClassifiers,如下:

void CvCascadeBoost::write( FileStorage &fs, const Mat& featureMap ) const
{
    CvCascadeBoostTree* weakTree;
    fs << CC_WEAK_COUNT << weak->total;                  //弱分类器总数
    fs << CC_STAGE_THRESHOLD << threshold;               //见后续补充
    fs << CC_WEAK_CLASSIFIERS << "[";
    for( int wi = 0; wi < weak->total; wi++)
    {
        weakTree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
        weakTree->write( fs, featureMap );
    }
    fs << "]";
}
关于weakClassifiers的 internalNodesleafValues参数,如下:

void CvCascadeBoostTree::write( FileStorage &fs, const Mat& featureMap )
{
	int maxCatCount = ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount();
	int subsetN = (maxCatCount + 31)/32;
	queue<CvDTreeNode*> internalNodesQueue;
	int size = (int)pow( 2.f, (float)ensemble->get_params().max_depth);
	Ptr<float> leafVals = new float[size];
	int leafValIdx = 0;
	int internalNodeIdx = 1;
	CvDTreeNode* tempNode;

	CV_DbgAssert( root );
	internalNodesQueue.push( root );

	fs << "{";
	fs << CC_INTERNAL_NODES << "[:";
	while (!internalNodesQueue.empty())
	{
		tempNode = internalNodesQueue.front();
		CV_Assert( tempNode->left );	//左分支存在
		if ( !tempNode->left->left && !tempNode->left->right) // left node is leaf 左分支是叶子节点
		{
			leafVals[-leafValIdx] = (float)tempNode->left->value;
			fs << leafValIdx-- ;      //0 -1 -2...
		}
		else                         //左分支不是叶子节点
		{
			internalNodesQueue.push( tempNode->left );
			fs << internalNodeIdx++; //1 2 3...
		}
		CV_Assert( tempNode->right );  //右分支存在
		if ( !tempNode->right->left && !tempNode->right->right) // right node is leaf 右分支是叶子节点
		{
			leafVals[-leafValIdx] = (float)tempNode->right->value;
			fs << leafValIdx--;     //0,-1,-2...
		}
		else//右分支不是叶子节点
		{
			internalNodesQueue.push( tempNode->right );
			fs << internalNodeIdx++; //1 2 3...
		}
		int fidx = tempNode->split->var_idx; //var_idx:分裂中所用到的变量的索引
		fidx = featureMap.empty() ? fidx : featureMap.at<int>(0, fidx);
		fs << fidx;
		if ( !maxCatCount )
			fs << tempNode->split->ord.c; //c:用在数值变量的分裂上的阈值。规则如下:如果var_value<c,那么next_node<-left,否则next_node<-right。
		else
			for( int i = 0; i < subsetN; i++ )
				fs << tempNode->split->subset[i];//subset:二值集合,用在在类别向量的分裂上。规则如下:如果var_value在subset里,那么next_node<-left,否则next_node<-right。
		internalNodesQueue.pop();
	}
	fs << "]"; // CC_INTERNAL_NODES

	fs << CC_LEAF_VALUES << "[:";
	for (int ni = 0; ni < -leafValIdx; ni++)
		fs << leafVals[ni];    //即从上面得到的节点value
	fs << "]"; // CC_LEAF_VALUES
	fs << "}";
}

 
 
 
 
:internalNodes中四个变量代表一个node,分别为node中的left/right标记、特征池中的ID和threshold。leafValues中两个变量代表一个node,分别为left leaf的值和right leaf的值。 

补充threshold

    int i, count = data->sample_count, nz_count = 0;
    double sum, threshold;

    if( params.weight_trim_rate <= 0. || params.weight_trim_rate >= 1. )
        EXIT;

    // use weak_eval as temporary buffer for sorted weights
    cvCopy( weights, weak_eval );

    icvSort_64f( weak_eval->data.db, count, 0 );

    // as weight trimming(调整) occurs immediately after updating the weights,
    // where they are renormalized, we assume that the weight sum = 1.
    sum = 1. - params.weight_trim_rate;

    for( i = 0; i < count; i++ )
    {
        double w = weak_eval->data.db[i];
        if( sum <= 0 )
            break;
        sum -= w;
    }

    threshold = i < count ? weak_eval->data.db[i] : DBL_MAX;


关于features

void _writeFeatures( const std::vector<Feature> features, cv::FileStorage &fs, const cv::Mat& featureMap )
{
    fs << FEATURES << "[";
    const cv::Mat_<int>& featureMap_ = (const cv::Mat_<int>&)featureMap;
    for ( int fi = 0; fi < featureMap.cols; fi++ )              //个数即featureMap.cols
        if ( featureMap_(0, fi) >= 0 )
        {
            fs << "{";
            features[fi].write( fs );
            fs << "}";
        }
    fs << "]";
}
其中的 rects

void CvHaarEvaluator::Feature::write( FileStorage &fs ) const
{
    fs << CC_RECTS << "[";
    for( int ri = 0; ri < CV_HAAR_FEATURE_MAX && rect[ri].r.width != 0; ++ri )	//CV_HAAR_FEATURE_MAX=3,上图就表示了我们只用了一个特征
    {
        fs << "[:" << rect[ri].r.x << rect[ri].r.y <<
            rect[ri].r.width << rect[ri].r.height << rect[ri].weight << "]";
    }
    fs << "]" << CC_TILTED << tilted;	//bool型
}
说明:opencv learning书中有提到(550页),我们使用1个特征(一个只有一个分裂的树),最多3个。

类haar特征的tilted取法如下(包括特征计算)

void CvHaarEvaluator::generateFeatures()
{
    int mode = ((const CvHaarFeatureParams*)((CvFeatureParams*)featureParams))->mode;
    int offset = winSize.width + 1;
    for( int x = 0; x < winSize.width; x++ )
    {
        for( int y = 0; y < winSize.height; y++ )
        {
            for( int dx = 1; dx <= winSize.width; dx++ )
            {
                for( int dy = 1; dy <= winSize.height; dy++ )
                {
                    // haar_x2
                    if ( (x+dx*2 <= winSize.width) && (y+dy <= winSize.height) )
                    {
                        features.push_back( Feature( offset, false,x,    y, dx*2, dy, -1,//开始tilted都是false 
                            x+dx, y, dx  , dy, +2 ) );
                    }
                    // haar_y2
                    if ( (x+dx <= winSize.width) && (y+dy*2 <= winSize.height) )
                    {
                        features.push_back( Feature( offset, false,
                            x,    y, dx, dy*2, -1,
                            x, y+dy, dx, dy,   +2 ) );
                    }
                    // haar_x3
                    if ( (x+dx*3 <= winSize.width) && (y+dy <= winSize.height) )
                    {
                        features.push_back( Feature( offset, false,
                            x,    y, dx*3, dy, -1,
                            x+dx, y, dx  , dy, +3 ) );
                    }
                    // haar_y3
                    if ( (x+dx <= winSize.width) && (y+dy*3 <= winSize.height) )
                    {
                        features.push_back( Feature( offset, false,
                            x, y,    dx, dy*3, -1,
                            x, y+dy, dx, dy,   +3 ) );
                    }
                    if( mode != CvHaarFeatureParams::BASIC )
                    {
                        // haar_x4
                        if ( (x+dx*4 <= winSize.width) && (y+dy <= winSize.height) )
                        {
                            features.push_back( Feature( offset, false,
                                x,    y, dx*4, dy, -1,
                                x+dx, y, dx*2, dy, +2 ) );
                        }
                        // haar_y4
                        if ( (x+dx <= winSize.width ) && (y+dy*4 <= winSize.height) )
                        {
                            features.push_back( Feature( offset, false,
                                x, y,    dx, dy*4, -1,
                                x, y+dy, dx, dy*2, +2 ) );
                        }
                    }
                    // x2_y2
                    if ( (x+dx*2 <= winSize.width) && (y+dy*2 <= winSize.height) )
                    {
                        features.push_back( Feature( offset, false,
                            x,    y,    dx*2, dy*2, -1,
                            x,    y,    dx,   dy,   +2,
                            x+dx, y+dy, dx,   dy,   +2 ) );
                    }
                    if (mode != CvHaarFeatureParams::BASIC)
                    {
                        if ( (x+dx*3 <= winSize.width) && (y+dy*3 <= winSize.height) )
                        {
                            features.push_back( Feature( offset, false,
                                x   , y   , dx*3, dy*3, -1,
                                x+dx, y+dy, dx  , dy  , +9) );
                        }
                    }
                    if (mode == CvHaarFeatureParams::ALL)
                    {
                        // tilted haar_x2
                        if ( (x+2*dx <= winSize.width) && (y+2*dx+dy <= winSize.height) && (x-dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,             //这里开始tilted是true
                                x, y, dx*2, dy, -1,
                                x, y, dx,   dy, +2 ) );
                        }
                        // tilted haar_y2
                        if ( (x+dx <= winSize.width) && (y+dx+2*dy <= winSize.height) && (x-2*dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,
                                x, y, dx, 2*dy, -1,
                                x, y, dx, dy,   +2 ) );
                        }
                        // tilted haar_x3
                        if ( (x+3*dx <= winSize.width) && (y+3*dx+dy <= winSize.height) && (x-dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,
                                x,    y,    dx*3, dy, -1,
                                x+dx, y+dx, dx,   dy, +3 ) );
                        }
                        // tilted haar_y3
                        if ( (x+dx <= winSize.width) && (y+dx+3*dy <= winSize.height) && (x-3*dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,
                                x,    y,    dx, 3*dy, -1,
                                x-dy, y+dy, dx, dy,   +3 ) );
                        }
                        // tilted haar_x4
                        if ( (x+4*dx <= winSize.width) && (y+4*dx+dy <= winSize.height) && (x-dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,
                                x,    y,    dx*4, dy, -1,
                                x+dx, y+dx, dx*2, dy, +2 ) );
                        }
                        // tilted haar_y4
                        if ( (x+dx <= winSize.width) && (y+dx+4*dy <= winSize.height) && (x-4*dy>= 0) )
                        {
                            features.push_back( Feature( offset, true,
                                x,    y,    dx, 4*dy, -1,
                                x-dy, y+dy, dx, 2*dy, +2 ) );
                        }
                    }
                }
            }
        }
    }
    numFeatures = (int)features.size();
}
其中的 Feature构造如下:

CvHaarEvaluator::Feature::Feature( int offset, bool _tilted,
                                          int x0, int y0, int w0, int h0, float wt0,
                                          int x1, int y1, int w1, int h1, float wt1,
                                          int x2, int y2, int w2, int h2, float wt2 )
{
    tilted = _tilted;

    rect[0].r.x = x0;
    rect[0].r.y = y0;
    rect[0].r.width  = w0;
    rect[0].r.height = h0;
    rect[0].weight   = wt0;

    rect[1].r.x = x1;
    rect[1].r.y = y1;
    rect[1].r.width  = w1;
    rect[1].r.height = h1;
    rect[1].weight   = wt1;

    rect[2].r.x = x2;
    rect[2].r.y = y2;
    rect[2].r.width  = w2;
    rect[2].r.height = h2;
    rect[2].weight   = wt2;

    if( !tilted )
    {
        for( int j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
        {
            if( rect[j].weight == 0.0F )
                break;
            CV_SUM_OFFSETS( fastRect[j].p0, fastRect[j].p1, fastRect[j].p2, fastRect[j].p3, rect[j].r, offset )
        }
    }
    else
    {
        for( int j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
        {
            if( rect[j].weight == 0.0F )
                break;
            CV_TILTED_OFFSETS( fastRect[j].p0, fastRect[j].p1, fastRect[j].p2, fastRect[j].p3, rect[j].r, offset )
        }
    }
}

另外,是不是觉得参数输入与输出不配,其实如下:(人家是有默认输入的)

  Feature( int offset, bool _tilted,
            int x0, int y0, int w0, int h0, float wt0,
            int x1, int y1, int w1, int h1, float wt1,
            int x2 = 0, int y2 = 0, int w2 = 0, int h2 = 0, float wt2 = 0.0F );

其中的 CV_SUM_OFFSETSCV_TILTED_OFFSETS如下:
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step )                      \
    /* (x, y) */                                                          \
    (p0) = (rect).x + (step) * (rect).y;                                  \
    /* (x + w, y) */                                                      \
    (p1) = (rect).x + (rect).width + (step) * (rect).y;                   \
    /* (x, y + h) */                                                      \
    (p2) = (rect).x + (step) * ((rect).y + (rect).height);                \
    /* (x + w, y + h) */                                                  \
    (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);

#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step )                   \
    /* (x, y) */                                                          \
    (p0) = (rect).x + (step) * (rect).y;                                  \
    /* (x - h, y + h) */                                                  \
    (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
    /* (x + w, y + w) */                                                  \
    (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width);  \
    /* (x + w - h, y + w + h) */                                          \
    (p3) = (rect).x + (rect).width - (rect).height                        \
           + (step) * ((rect).y + (rect).width + (rect).height);

Feature类组成如下:

class Feature
    {
    public:
        Feature();
        Feature( int offset, bool _tilted,
            int x0, int y0, int w0, int h0, float wt0,
            int x1, int y1, int w1, int h1, float wt1,
            int x2 = 0, int y2 = 0, int w2 = 0, int h2 = 0, float wt2 = 0.0F );
        float calc( const cv::Mat &sum, const cv::Mat &tilted, size_t y) const;
        void write( cv::FileStorage &fs ) const;

        bool  tilted;
        struct
        {
            cv::Rect r;
            float weight;
        } rect[CV_HAAR_FEATURE_MAX];

        struct
        {
            int p0, p1, p2, p3;
        } fastRect[CV_HAAR_FEATURE_MAX];
    };
inline float CvHaarEvaluator::operator()(int featureIdx, int sampleIdx) const
{
    float nf = normfactor.at<float>(0, sampleIdx);
    return !nf ? 0.0f : (features[featureIdx].calc( sum, tilted, sampleIdx)/nf);
}

inline float CvHaarEvaluator::Feature::calc( const cv::Mat &_sum, const cv::Mat &_tilted, size_t y) const
{
    const int* img = tilted ? _tilted.ptr<int>((int)y) : _sum.ptr<int>((int)y);
    float ret = rect[0].weight * (img[fastRect[0].p0] - img[fastRect[0].p1] - img[fastRect[0].p2] + img[fastRect[0].p3] ) +
        rect[1].weight * (img[fastRect[1].p0] - img[fastRect[1].p1] - img[fastRect[1].p2] + img[fastRect[1].p3] );
    if( rect[2].weight != 0.0f )
        ret += rect[2].weight * (img[fastRect[2].p0] - img[fastRect[2].p1] - img[fastRect[2].p2] + img[fastRect[2].p3] );
    return ret;
}



补充

HOG计算:

void CvHOGEvaluator::generateFeatures()
{
    int offset = winSize.width + 1;
    Size blockStep;
    int x, y, t, w, h;

    for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize
    {
        blockStep = Size(4,4);
        w = 2*t; //width of a block
        h = 2*t; //height of a block
        for (x = 0; x <= winSize.width - w; x += blockStep.width)
        {
            for (y = 0; y <= winSize.height - h; y += blockStep.height)
            {
                features.push_back(Feature(offset, x, y, t, t));
            }
        }
        w = 2*t;
        h = 4*t;
        for (x = 0; x <= winSize.width - w; x += blockStep.width)
        {
            for (y = 0; y <= winSize.height - h; y += blockStep.height)
            {
                features.push_back(Feature(offset, x, y, t, 2*t));
            }
        }
        w = 4*t;
        h = 2*t;
        for (x = 0; x <= winSize.width - w; x += blockStep.width)
        {
            for (y = 0; y <= winSize.height - h; y += blockStep.height)
            {
                features.push_back(Feature(offset, x, y, 2*t, t));
            }
        }
    }

    numFeatures = (int)features.size();
}
CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH )
{
    rect[0] = Rect(x, y, cellW, cellH); //cell0
    rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1
    rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2
    rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3

    for (int i = 0; i < N_CELLS; i++)
    {
        CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset);
    }
}
LBP计算:

void CvLBPEvaluator::generateFeatures()
{
    int offset = winSize.width + 1;
    for( int x = 0; x < winSize.width; x++ )
        for( int y = 0; y < winSize.height; y++ )
            for( int w = 1; w <= winSize.width / 3; w++ )
                for( int h = 1; h <= winSize.height / 3; h++ )
                    if ( (x+3*w <= winSize.width) && (y+3*h <= winSize.height) )
                        features.push_back( Feature(offset, x, y, w, h ) );
    numFeatures = (int)features.size();
}
CvLBPEvaluator::Feature::Feature( int offset, int x, int y, int _blockWidth, int _blockHeight )
{
    Rect tr = rect = cvRect(x, y, _blockWidth, _blockHeight);
    CV_SUM_OFFSETS( p[0], p[1], p[4], p[5], tr, offset )
    tr.x += 2*rect.width;
    CV_SUM_OFFSETS( p[2], p[3], p[6], p[7], tr, offset )
    tr.y +=2*rect.height;
    CV_SUM_OFFSETS( p[10], p[11], p[14], p[15], tr, offset )
    tr.x -= 2*rect.width;
    CV_SUM_OFFSETS( p[8], p[9], p[12], p[13], tr, offset )
}










评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值