kudu
kudu
宝哥大数据
大数据、机器学习、深度学习
展开
-
记一次kudu重启之后tablet都处于UNAVAILABLE
原由:Exception in thread “main” org.apache.kudu.client.NonRecoverableException: can not complete before timeout: KuduRpc修改配置, 重启kudu[root@spark001 conf]# vim tserver.gflagfile-rpc_encryption=disabled-rpc_authentication=disabled-trusted_subnets=0.0.0.0原创 2021-03-04 10:35:48 · 1050 阅读 · 2 评论 -
kudu操作命令
1、检查kudu集群健康状态kudu cluster ksck s91原创 2021-03-03 10:34:14 · 1113 阅读 · 0 评论 -
kudu集成impala
1.1、修改配置在每一个服务器的 impala 的配置文件中添加如下配置。vim /etc/default/impala在 IMPALA_SERVER_ARGS 下添加:-kudu_master_hosts=chb1:7051,chb2:7051,chh3:70511.2、impala操作kudu1.2.1、创建内部表在这里插入代码片...原创 2021-01-24 11:36:53 · 284 阅读 · 0 评论 -
DataFrame API操作Kudu
虽然我们可以通过 KuduContext 执行大量操作,但我们还可以直接从默认数据源本身调用读/写 API。要设置读取,我们需要为 Kudu 表指定选项,命名我们要读取的表以及为表提供服务的 Kudu 集群的 Kudu 主服务器列表。1.1、DataFrame 读取kudu @Test def query(): Unit = { // 1、创建KuduContext 和SparkSession val spark = SparkSession.builder() .原创 2021-01-21 13:49:18 · 468 阅读 · 0 评论 -
Spark操作Kudu
到目前为止,我们已经听说过几个上下文,例如 SparkContext,SQLContext,HiveContext, SparkSession,现在,我们将使用 Kudu 引入一个KuduContext。这是可在Spark应用程序中广播的主要可序列化对象。此类代表在 Spark 执行程序中与 Kudu Java 客户端进行交互。 KuduContext 提供执行DDL 操作所需的方法,与本机 Kudu RDD的接口,对数据执行更新/插入/删除,将数据类型从Kudu转换为Spark 等。1.1原创 2021-01-21 09:24:48 · 786 阅读 · 0 评论 -
使用javaAPI操作kudu
文章目录1.1、Kudu API的结构设计1.2、导入依赖1.3、操作1.3.1、初始化1.1、Kudu API的结构设计1.2、导入依赖1.3、操作1.3.1、初始化原创 2021-01-20 13:21:29 · 928 阅读 · 0 评论 -
Kudu问题解决
1、WARNINGS: Row of size 3.88 MB could not be materialized in plan node with id 2. Increase the max_row_size query option (currently 512.00 KB) to process larger rows.原创 2021-01-13 10:19:55 · 3270 阅读 · 5 评论 -
Apache Kudu架构
与 HDFS和HBase相似,Kudu使用单个的Master节点 ,用来管理集群的元数据,并且使用任意量的Tablet Server(类似 HBase中的RegionServer角色)节点用来存储实际数据。可以部署多个Master节点来提高容错性。1.1、 Table 表(Table)是数据库中用来存储的对象, 是有结构的数据集合 。kudu 中的表具有schema(纲要)和全局有序的 primary key(主键)。 kudu中一个table会被水平分成多个被称之为tablet 的片段 。1原创 2021-01-04 09:54:36 · 322 阅读 · 0 评论 -
Apache Kudu的介绍
一、Apache Kudu的介绍1.1、背景介绍 在KUDU之前,大数据主要以两种方式存储;(1)静态数据 :以HDFS引擎作为存储,适用于高吞吐量的离线大数据分析场景。这类存储的局限性是数据无法进行随机读写。(2)动态数据 :以 HBase 、Cassandra 作为存储引擎,适用于大数据随机读写场景。局限性是批量读取吞吐远不如HDFS,不适用于批量数据分析的场景。 从上面分析可知,这两种数据在存储方式完 全不同进而导致使用场景从上面分析可知,这两种数据在存储方式完全原创 2021-01-04 08:48:12 · 668 阅读 · 0 评论 -
kudu导图目录
一、kudu介绍1.1、背景1.2、kudu组件二、操作kudu2.1、使用javaAPIc操作苦读原创 2020-12-27 15:07:39 · 339 阅读 · 0 评论