高数
高等数学
宝哥大数据
大数据、机器学习、深度学习
展开
-
常数项级数
一、概念1.1、无穷级数的定义1.2、收敛与发散的定义1.3、等比级数 ∣q∣<1,收敛,∣q∣≥1,发散|q|<1,收敛,|q| \geq1,发散∣q∣<1,收敛,∣q∣≥1,发散二、性质2.1、收敛、发散、与和的关系2.2、基本性质2.3、级数收敛的必要条件: 一般项unu_nun趋于零一般项unu_nun不趋于零,必定发散2.3.1、注意不...原创 2020-03-18 20:54:49 · 4383 阅读 · 0 评论 -
常数项级数的收敛法
问题: 大多数级数,很难用定义来研究其敛散性一、正项级数及其收敛法1.1、正项级数(每项非负,<font部分和数列单调递增)一、比较审敛法二、比值审敛法三、根值审敛法...原创 2020-03-18 12:33:34 · 5534 阅读 · 0 评论 -
对坐标的曲面积分
一、问题引入1.1、流向曲面一侧的流量1.2、向量场二、对坐标的曲面积分2.1、定义2.2、两类曲面积分的联系: 使用第一类曲面积分定义第二类曲面积分2.3、物理意义2.4、对坐标的曲面积分的计算(使用第一类曲面积分表示,然后转为二重积分)2.4.1、习题例1、注意是三个曲面组成,不要只算圆柱面(还有上下面)2.5、另外一种计算第二类曲面积分2.5.1、...原创 2020-03-16 22:14:32 · 17033 阅读 · 2 评论 -
重积分应用
一、体积二、曲面面积三、质量与质心四、转动惯量原创 2020-03-13 23:25:40 · 11576 阅读 · 1 评论 -
二重积分性质与概念
一、二重积分概念曲顶柱体体积平面薄片的质量1.1、二重积分定义1.1.1、直角坐标系的面积元素dxdydxdydxdy二、二重积分性质原创 2020-03-12 22:58:53 · 3360 阅读 · 0 评论 -
多元函数的极值及其求法
一、多元函数的极值与最值1.1、极值1.1.1、二元函数极值定义例如:z=x2+y2z=\sqrt{x^2+y^2}z=x2+y2在(0,0)处取得极小值z=−x2+y2z=-\sqrt{x^2+y^2}z=−x2+y2在(0,0)处取得极大值KaTeX parse error: Expected 'EOF', got '}' at position 5: z=xy}̲在(0,0...原创 2020-03-11 22:58:47 · 13478 阅读 · 0 评论 -
方向导数和梯度
一、方向导数1.1、方向导数的定义1.1.1、偏导数存在,则方向导数存在;反之,则不成立(因为方向导数是单边趋于0+)1.2、方向导数计算 ∂f∂l∣(x,y)=fx(x,y)cosα+fy(x,y)cosβ\frac {\partial f }{\partial l}|_{(x,y)} ={f_x(x,y)}cos\alpha+f_y(x,y)cos\beta∂l∂f∣(x,y)=...原创 2020-03-11 18:17:14 · 2419 阅读 · 0 评论 -
多元函数微分学的几何应用
一、一元向量值函数及其导数二、空间曲线的切线和法平面三、曲面的切平面和法线原创 2020-03-11 12:45:25 · 7369 阅读 · 0 评论 -
多元复合函数的求导法则
一、复合函数的求导法则1.1、一元函数与多元函数符合的情形1.1.1、证明1.1.2、推广到中间变量多余两个的1.2、多元函数与多元函数的复合1.2.1、为什么将dzdx变成∂z∂x\frac {dz} {dx} 变成\frac {\partial z}{\partial x}dxdz变成∂x∂z1.2.2、推广到多个中间变量1.3、特殊情形1.3.1、第一种特殊情...原创 2020-03-10 20:15:02 · 20579 阅读 · 2 评论 -
全微分
一、全微分定义1.1、原创 2020-03-10 11:45:01 · 16245 阅读 · 0 评论 -
空间曲线及其方程
一、空间曲线一般方程就是两个曲面的交线1.1、例二、空间曲线参数方程三、空间曲线在坐标面上的投影3.1、例原创 2020-03-09 19:47:35 · 14129 阅读 · 0 评论 -
平面及其方程
一、平面点法式方程二、平面的一般方程三、两平面的夹角原创 2020-03-09 16:34:44 · 755 阅读 · 0 评论 -
曲面及其方程
一、曲面与曲线 及其方程的概念二、曲面研究的基本问题已知曲面,求方程已知方程,画曲面三、原创 2020-03-09 16:27:58 · 5322 阅读 · 0 评论 -
数量积、向量积、混合积
一、数量积二、向量积三、混合积原创 2020-03-09 12:49:26 · 4880 阅读 · 0 评论 -
常系数线性微分方程组解法举例
一、常系数线性微分方程组解法举例1.1、例原创 2020-03-08 22:18:05 · 2677 阅读 · 0 评论 -
欧拉方程
一、欧拉方程1.1、例原创 2020-03-08 22:15:30 · 11900 阅读 · 0 评论 -
常系数齐次线性微分方程
一、二阶常系数齐次线性微分方程的通解二、推广到高阶原创 2020-03-08 19:53:10 · 13908 阅读 · 0 评论 -
高阶线性微分方程
一、n阶线性方程1.1、非齐次线性方程1.2、非齐次线性方程: f(x) = 0二、线性微分方程解的结构先讨论二阶2.1、齐次线性方程2.1.1、定理1: 解的线性组合仍为解2.2、分齐次线性方程...原创 2020-03-08 17:50:27 · 8705 阅读 · 1 评论 -
可降解的高阶微分方程
一、yn = f(x)型的微分方程对方程两边进行积分二、y’’ = f(x, y’) 型的微分方程不含y2.1、例没有y, 有y的高阶导数, 通过引入变量p = y’, 将原方程降阶,变为一阶线性方程通过可分离变量方程,或一阶线性方程求取通解再讲p使用y’替换回来, 相当于再求一次一阶线性方程。2.1.1、例1:三、y’’ = f(y, y’) 型的微分方程...原创 2020-03-08 15:10:42 · 10257 阅读 · 0 评论 -
可分离变量的微分方程
一、原创 2020-03-08 09:14:10 · 18454 阅读 · 2 评论 -
微分方程的基本概念
一、使用下面的例子说明微分方程的基本概念1.1、微分方程定义1.2、微分方程的阶未知函数的最高阶导数的阶数注:以后我们讨论的方程都是可解除最高阶导数的方程1.3、方程的解满足的函数,带入微分方程,使得方程成为恒等式,这个函数叫做微分方程的解1.3.1、通解解函数任意常数任意常数的个数与方程的阶数相同任意常数相互独立1.3.2、特解通过初值条件解的方程的特...原创 2020-03-07 20:26:36 · 4852 阅读 · 1 评论 -
定积分在物理上的应用
一、变力沿直线所做的功二、水压力引力原创 2020-03-07 14:03:04 · 3225 阅读 · 1 评论 -
定积分在几何学上的应用
一、平面图像的面积1.1、直角坐标1.1.1、例1:积分变量选取不同如果选取x为积分变量,面积元素分成两部分,增加计算量1.1.2、参数方程1.2、极坐标2.1.1、例二、体积2.1、旋转体的体积2.1.1、绕x轴2.1.2、绕y轴2.1.3、例2.2、平行截面面积为已知的立体的体积三、平面曲线弧长...原创 2020-03-07 13:05:34 · 4992 阅读 · 0 评论 -
定积分的元素法
1.1、回顾曲边梯形面积问题分割近似求和取极限1.2、所求量对区间具有可加性1.3、面积元素1.4、元素法原创 2020-03-07 10:18:24 · 1035 阅读 · 0 评论 -
反常积分
一、定积分的两个限制二、反常积分原创 2020-03-06 15:38:57 · 911 阅读 · 0 评论 -
定积分的换元积分和分部积分
不定积分的换元积分不定积分的分部积分一、换元积分1.1、换元公式1.1、注意1.1.1、注意积分限,及对应积分限的取值1.2、非负函数积分大于0(1)是(2)的逆否命题(3)将g(x)-f(x)构造成一个新函数,就可以利用(1)的结论1.3、奇偶函数1.3、周期函数二、部分积分...原创 2020-03-06 12:30:57 · 1217 阅读 · 0 评论 -
微积分基本公式
一、变速直线运动中位置函数和速度函数的关系二、积分上限函数及其导数2.1、积分上限函数2.2、定理1:连续函数f(x)取上限x的定积分,然后求导,还原得到f(x)2.2.1、证明导数定义积分的中值定理2.3、定理2:连续函数的原函数存在三、牛顿-莱布尼茨公式(微积分基本公式)3.1、定理3: 微积分基本定理3.1.1、证明习题3.1.2、这个公式揭示了定...原创 2020-03-05 22:39:22 · 14453 阅读 · 1 评论 -
闭区间上连续函数的性质
一、有界性与最大最小值定理二、零点定理与介值定理2.1、零点定理2.2、介值定理2.2.1、推论原创 2020-03-05 12:22:12 · 2427 阅读 · 0 评论 -
定积分概念与性质
一、定积分问题举例1.1、曲面梯形面积1.2、变速直线运动的路程二、定积分定义三、定积分的近似计算(计算机)矩形法梯形法抛物线法(辛普森法)四、定积分性质4.0、补充4.1、性质14.2、性质2: 积分可加性4.3、性质34.4、性质4使用定积分定义证明4.4.1、推论1...原创 2020-03-05 11:16:18 · 4094 阅读 · 0 评论 -
有理函数的积分
1.1、有理函数积分P(x)、Q(x)是x的多项式P(x)、Q(x)没有公因式利用多项式除法,将假分式化为一个多项式与一个真分式之和的形式原创 2020-03-04 22:35:41 · 4897 阅读 · 0 评论 -
换元积分法
一、第一类换元法1.1、如何使用二、原创 2020-03-03 13:35:15 · 1353 阅读 · 0 评论 -
曲率
一、弧微分1.1、有向弧段1.2、弧微分公式二、曲率及其计算公式原创 2020-03-01 20:47:15 · 1711 阅读 · 1 评论 -
函数的单调性与曲线的凸凹性
一、单调性1.1、定理11.2、通过拉格朗日中值定理证明二、凹凸性及拐点2.1、凹凸性定义2.2、定理2: 凹凸性判断定理原创 2020-02-29 21:10:25 · 963 阅读 · 0 评论 -
中值定理习题
1.1、证明方程 x5 + x + 1 = 0 只有一个正根。1.1.1、通过零点定理,证明存在性1.1.2、通过反证法,假设有两个正根,然后通过罗尔定理的至少有一点f’(x0) = 0 , x0属于(x1,x2), 但是与原方程矛盾,从而证明唯一性。...原创 2020-02-29 16:43:51 · 2986 阅读 · 0 评论 -
泰勒公式
一、问题提出1.1、问题引入1.2、问题提出: 近似代替,精度不高,需求寻找一个更高次的多项式逼近函数原创 2020-02-29 10:09:01 · 1383 阅读 · 0 评论 -
洛必达法则
前言: 未定型一、洛必达法则1.1、定理11.1.1、证明1.1.2、类推,应用多次洛必达法则1.1.3、例子1.2、定理21.3、其他类型的未定式,,通过0/0,无穷/无穷型的未定式计算1.3.1、0*无穷 转化为∞/∞...原创 2020-02-28 20:30:04 · 1480 阅读 · 2 评论 -
微分中值定理
一、罗尔定理1.1、费马引理费马引理仅仅给出了函数在某个点为极值的必要条件。f’(x0) = 0 不能证明为极值点, 如x3在零处导数为0, 倒不是极值点通常将导数为零的点称为驻点(临界点或稳定点)1.2、罗尔定理...原创 2020-02-27 20:05:31 · 482 阅读 · 0 评论 -
函数的微分
一、微分的定义1.1、二、微分的集合意义三、基本初等公式的微分公式与微分运算法则3.2、函数的和差积商的微分法则3.3、符合函数的微分法则四、微分在近似计算中的应用...原创 2020-02-27 08:34:18 · 1153 阅读 · 0 评论 -
隐函数及由参数方程确定的函数的导数 相关变换率
一、隐函数的导数1.1、隐函数与显函数1.2、方程确定函数1.3、隐函数的显化,隐函数的导数1.4、例题1.4.1、例11.4.2、对数求导y = xsinx 可以写成esinxlnx ,然后对方程两边同时对x求导,上边方法运用对数求导法1.4.3、更加清楚看到对数求导的简便二、由参数方程所确定的函数的导数2.1、由抛物运动引出(4-2)将t消去有:2...原创 2020-02-22 16:45:13 · 1335 阅读 · 0 评论 -
高阶导数
一、高阶高数1.1、由加速度引出二阶导数1.2、高阶导数的定义原创 2020-02-20 17:04:07 · 600 阅读 · 0 评论