题记:
这几天都在学习算法遇到了比较典型的0-1背包问题,下面就0-1背包的问题利用回溯法来解决。但是,在网上看到较多的都是java或者c实现的,那么我就来用JavaScript来实现一下基于回溯法解决的0-1背包问题
正文:
0-1背包问题:
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
举个例子:
现在有3个物品,重量分别为16,15,15。价值分别为45,25,25。我有一个能装30的背包,怎么装能达到背包内价值最多?
注意:物品只能选择拿或者不拿,不能装部分
回溯法:
什么是回溯法呢?
回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。
什么时候使用呢?
有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法。
解空间树:
既然说了,回溯法是一种组织的井井有条的,避免不必要搜索的穷举式搜索法,那么我们就要构造一个解空间树。
回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
生成问题的基本状态:
扩展结点:一个正在产生儿子的结点称为扩展结点
活结点:一个自身已生成但其儿子还没有全部生成的节点称做活结点
死结点:一个所有儿子已经产生的结点称做死结点
0-1背包与回溯法:
简单介绍了0-1背包问题与回溯法的概念,接下来我们来看看怎么利用回溯法实现0-1背包问题的解。
我们来想一想对于这个数量为3的0-1背包问题,解一共有8种:(1代