Aszxqw

新博客地址 http://yanyiwu.com

POJ2553 The Bottom of a Graph 强连通 tarjan

题意:此题最难的部分即是理解题意。

注意要求得点的定义为:所有这个点能到达的点都能到达这个点。

思路:

强连通,缩点,找出出度为0的强连通分量集合,就是要求得点集合。



#include<iostream>
#define min(a,b) (a<b?a:b)
using namespace std;
const int N=5005;
bool mat[N][N];
int dfn[N],low[N];
bool instack[N];
int indgr[N];
int outdgr[N];
int stack[N];
int sp;
int index;
int n,m;
int belong[N];
void tarjan(int i)
{
	dfn[i]=low[i]=index++;
	stack[sp++]=i;
	instack[i]=true;
	for(int j=1;j<=n;j++)
	{
		if(mat[i][j])
		{
			if(!dfn[j])
			{
				tarjan(j);
				low[i]=min(low[i],low[j]);
			}
			else if(instack[j])
			{
				low[i]=min(dfn[j],low[i]);
			}
		}
	}
	if(low[i]==dfn[i])
	{
		int j;
		do
		{
			j=stack[--sp];
			instack[j]=false;
			belong[j]=i;
		}while(j!=i);
	}
}
void solve()
{
	for(int i=1;i<=n;i++)
	{
		if(!dfn[i])
		{
			tarjan(i);
		}
	}
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			if(mat[i][j])
			{
				if(belong[i]!=belong[j])
				{
					indgr[belong[j]]++;
					outdgr[belong[i]]++;
				}
			}
		}
	for(int i=1;i<=n;i++)
	{
		if(outdgr[belong[i]]==0)
		{
			printf("%d ",i);
		}
	}
	printf("\n");
}
int main()
{
	while(scanf("%d%d",&n,&m),n!=0)
	{
		index=1;
		sp=1;
		memset(indgr,0,sizeof(indgr));
		memset(outdgr,0,sizeof(outdgr));
		memset(dfn,0,sizeof(dfn));
		memset(low,0,sizeof(low));
		memset(mat,0,sizeof(mat));
		memset(instack,0,sizeof(instack));
		memset(stack,0,sizeof(stack));
		memset(belong,0,sizeof(belong));
		int from,to;
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&from,&to);
			mat[from][to]=true;
		}
		solve();
	}
	return 0;
}


阅读更多
文章标签: graph
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭