CSU->1023: 修路

1023: 修路

              Time Limit: 1 Sec     Memory Limit: 128 Mb    

Description

前段时间,某省发生干旱,B山区的居民缺乏生活用水,现在需要从A城市修一条通往B山区的路。假设有A城市通往B山区的路由m条连续的路段组成,现在将这m条路段承包给n个工程队(n ≤ m ≤ 300)。为了修路的便利,每个工程队只能分配到连续的若干条路段(当然也可能只分配到一条路段或未分配到路段)。假设每个工程队修路的效率一样,即每修长度为1的路段所需的时间为1。现在给出路段的数量m,工程队的数量n,以及m条路段的长度(这m条路段的长度是按照从A城市往B山区的方向依次给出,每条路段的长度均小于1000),需要你计算出修完整条路所需的最短的时间(即耗时最长的工程队所用的时间)。

Input

第一行是测试样例的个数T ,接下来是T个测试样例,每个测试样例占2行,第一行是路段的数量m和工程队的数量n,第二行是m条路段的长度。

Output

对于每个测试样例,输出修完整条路所需的最短的时间。

Sample Input

2
4 3
100 200 300 400
9 4
250 100 150 400 550 200 50 700 300

Sample Output

400
900

Hint

Source

中南大学第四届大学生程序设计竞赛

题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1023

题解:本题就是从m段路中找出最长的一段,作为二分的left(此时意思是需要m个工程队);再计算m段路的总长度,作为二分的right(此时意味着就是用一个工程队将其修完),其ans就是在这个范围内。具体看代码:

AC代码:

#include<iostream>
#include<algorithm>
using namespace std;

int road[305];
int main()
{
    int T,N,M,sum,big;
    cin>>T;
    while(T--)
    {
        cin>>N>>M;
        sum=0;              
        big=0;              
        for(int i=0;i<N;i++)
        {
            cin>>road[i];
            sum+=road[i];          //求出路段长度之和
            big=max(big,road[i]);  //求出最长的路段长度
        }
        int low=big,high=sum,mid;  //二分的区间为sum和big之间
        while(high>low)
        {
            mid=(low+high)/2;
            sum=0;
            int cnt=0;
            for(int i=0;i<N;i++)
            {
                sum+=road[i];
                if(sum>mid)
                {
                    sum=road[i];
                    cnt++;     //求出在该时间(距离)条件下最少需要的队伍数量
                }
            }
            if(cnt<M)          //数量不足M说明修的时间过长,不合适,缩小上边界
                high=mid;
            else
                low=mid+1;
        }
        cout<<low<<endl;       //此时low=high
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值