修路
前段时间,某省发生干旱,B山区的居民缺乏生活用水,现在需要从A城市修一条通往B山区的路。假设有A城市通往B山区的路由m条连续的路段组成,现在将这m条路段承包给n个工程队(n ≤ m ≤ 300)。为了修路的便利,每个工程队只能分配到连续的若干条路段(当然也可能只分配到一条路段或未分配到路段)。假设每个工程队修路的效率一样,即每修长度为1的路段所需的时间为1。现在给出路段的数量m,工程队的数量n,以及m条路段的长度(这m条路段的长度是按照从A城市往B山区的方向依次给出,每条路段的长度均小于1000),需要你计算出修完整条路所需的最短的时间(即耗时最长的工程队所用的时间)。
Input
第一行是测试样例的个数T ,接下来是T个测试样例,每个测试样例占2行,第一行是路段的数量m和工程队的数量n,第二行是m条路段的长度。
Output
对于每个测试样例,输出修完整条路所需的最短的时间。
Sample Input
2
4 3
100 200 300 400
9 4
250 100 150 400 550 200 50 700 300
Sample Output
400
900
思路: 想了很久都没思路的一道题,看大神做了之后立马云雾顿开,ok,现在说思路,最大时间肯定是数组元素总和,最小时间是元素最大值,令left=元素最大值,right=元素总和,那么mid=(left + right)/2就是理想花费时间了,对于这m个元素,从1开始计算花费时间大于mid的个数num,如果num>n,说明这n个工程队不足以在理想时间内做完,那么left=mid+1,反之right=mid(不令right=mid - 1的原因是-1之后再除以2就会丢失1,如果-1处理不好可以被hack)代码:
#include<cstdio>
using namespace std;
int road[400];
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int m,n,i,left = 0,right = 0,mid;
scanf("%d %d",&m,&n);
for (i = 0;i < m;i ++)
{
scanf("%d",&road[i]);
right += road[i];
if (road[i] > left)
left = road[i];
}
while (left < right)
{
mid = (left + right) / 2;
int num = 1,sum = road[0];
for (i = 1;i < m;i ++)
{
sum += road[i];
if (sum > mid)
{
num ++;
sum = road[i];
if(num > n) //在这个地方就判断能够省时间,以防TLE
{ //感兴趣的话可以试试在循环外判断的时间差别
left = mid + 1;
break;
}
}
}
if (i == m)
right = mid;
}
printf("%d\n",right);
}
return 0;
}