1、引言
**小屌丝:**鱼哥,你看这是啥。
小鱼: 小砂糖橘,是广西的吗。
小屌丝:…好眼力, 这冰雪大世界的后劲挺大啊。
小鱼: 那必须的,清澈的爱,只为中国!
小屌丝: 鱼哥,这几天不见,格局又大了。
小鱼: 这话说得,不爱听,说的以前格局小似的。
小屌丝: …言归正传, 鱼哥,orange3 知道吗
小鱼: 我知道啊,橙子啊,
小屌丝:… 唉,我说的是不是橙子
小鱼: 那是橘子? 橘生淮南则为橘,生于淮北则为枳。
小屌丝: 哎呀… 我说的是数据分析师必备的orange3库。
小鱼:… 那你不早说,这个我知道啊,还挺甜的。
小屌丝: 怪我了。
小鱼: 那也不至于,毕竟,格局在这。
小屌丝: 既然这么说,那,给俺讲一讲orange3这个库呗
小鱼: 你要待我去尔滨。
小屌丝: 不远嘛,
小鱼: 731。
小屌丝: 不远,不远,讲完,咱就去。
小鱼: 妥妥的。
2、orange3介绍
2.1 定义
Orange3是一款开源的数据分析和可视化工具,它使用Python语言编写,旨在提供一种简单而直观的方式来探索和分析数据。
Orange3是一个可视化组件的集合,提供了许多用于数据可视化和可视分析的工具,包括散点图、条形图、热力图、决策树等。
2.2 特点
orange3的特点还是蛮多的,大致如下:
-
可视化编程:使用图形界面,允许用户通过拖放操作来构建数据流程和分析模型,无需编写代码。
-
数据可视化:提供了丰富的数据可视化工具,帮助用户更好地理解和探索数据。
-
机器学习: 集成各种机器学习算法,使用户能够构建和评估各种机器学习模型。
-
数据预处理:提供了丰富的数据预处理工具,包括特征选择、特征工程和数据清洗等。
-
数据集成:可以轻松集成不同数据源的数据,包括CSV、Excel、SQL数据库等。
-
可拓展:提供了丰富的交互功能,用户可以通过点击、拖动和选择来探索数据和可视化结果。
2.3 常用功能
2.3.1 安装
因为 orange3 属于三方库,所以,需要先安装,在使用。
老规矩, pip安装
pip install orange3
其它安装方式,直接看这两篇:
《Python3,选择Python自动安装第三方库,从此跟pip说拜拜!!》
《Python3:我低调的只用一行代码,就导入Python所有库!》
2.3.2 数据可视化
orange3的数据可视化有两种方式:
- 界面操作
在Orange3中,选择数据集。
1、单击“Visualize”按钮。
2、选择要创建的可视化图表类型,并根据需要配置图表选项。
3、单击“Plot”按钮以生成可视化图表。
- 代码构建
# -*- coding:utf-8 -*-
# @Time : 2024-01-09
# @Author : Carl_DJ
'''
实现功能:
数据可视化
'''
import Orange
# 导入数据
data = Orange.data.Table("Demo.csv")
# 创建散点图
scatter = Orange.visualization.ScatterPlot()
scatter.setData(data)
scatter.setXYaxes(data.domain[0], data.domain[1])
# 显示可视化图表
scatter.show()
2.3.3 数据导入
orange3的数据导入依然有两种方式:
- 界面操作
1、启动Orange3后,单击“Open Data”按钮。
2、选择要导入的数据文件(如CSV文件)并打开它。
3、在导入数据之后,可以在界面上看到数据的预览。
- 代码构建
# -*- coding:utf-8 -*-
# @Time : 2024-01-09
# @Author : Carl_DJ
'''
实现功能:
数据导入
'''
import Orange
# 导入CSV文件
data = Orange.data.Table("Demo2.csv")
# 打印数据信息
print("数据行数:", len(data))
print("数据列数:", len(data.domain.attributes))
2.3.4 机器学习建模
- 界面操作
在Orange3中,选择数据集。
1、单击“Machine Learning”按钮。
2、选择要使用的机器学习算法,并根据需要配置算法参数。
3、单击“Train”按钮以训练模型。
4、使用“Test & Score”选项来评估模型的性能。
- 代码构建
# -*- coding:utf-8 -*-
# @Time : 2024-01-09
# @Author : Carl_DJ
'''
实现功能:
机器学习建模
'''
import Orange
# 导入数据
data = Orange.data.Table("Demo3.csv")
# 使用决策树算法构建分类模型
tree_classifier = Orange.classification.TreeLearner()
tree_model = tree_classifier(data)
# 预测新数据
pre_data = Orange.data.Table("Demo_pre.csv")
predictions = tree_model
(new_data)
# 打印预测结果
for instance, prediction in zip(pre_data , predictions):
print("实例:", instance, " 预测结果:", prediction)
3、总结
看到这里,今天的内容差不多就到这里了。
今天主要介绍了orange3库。
在平常工作中, 数据分析工程师、数据科学工程师对orange3库的使用频次,还是比较多的。
当然,如果我不想学习orange3,只想掌握Pandas、Numpy、Bokeh等,可以看小鱼的这些博文:
- 《Python3,必备数据可视化之Altair,竟然比Matplotlib的用法还简单。》
- 《Python3,必备数据可视化之:数据交互可视化》
- 《Python3,Pandas这4种高频使用的筛选数据的方法,不得不说,确实挺好》
- 《Python3,一篇搞定Numpy与Pandas的差异点及应用场景,妥妥的学到了。》
或者,去小鱼的数据分析专栏看看,一定会有你想要的知识。
我是小鱼:
- CSDN 博客专家;
- 阿里云 专家博主;
- 51CTO博客专家;
- 51认证讲师等;
- 认证金牌面试官;
- 职场面试培训、职业规划师;
- 多个国内主流技术社区的认证专家博主;
- 多款主流产品(阿里云等)测评一、二等奖获得者;
关注小鱼,带你学习更多更专业的Python相关技术。