【深度学习】最强算法之:残差网络(ResNet)

本文详细介绍了残差网络(ResNet)的概念、原理、实现方式,包括如何通过跳跃连接解决深度网络的梯度问题,以及如何构建和使用基本block和bottleneckblock。还提供了代码示例,展示了ResNet在深度学习模型中的应用和优化策略。
摘要由CSDN通过智能技术生成

1、引言

小屌丝:鱼哥,深度神经网络是不是少了一篇没写
小鱼:少了哪篇?
在这里插入图片描述

小屌丝:额… 就是 内个…
小鱼:你倒是说啊, 哪个啊?
小屌丝:就…就是
小鱼:赶紧说,别墨迹
小屌丝:ResNet
小鱼:咳, 我还以为哪篇了
小屌丝:那…是不是要更新啊
小鱼:好说好说。
小屌丝: 哇塞。
在这里插入图片描述

2、残差网络

2.1 定义

残差网络(Residual Network,简称ResNet)是由Kaiming He等人在2015年提出的一种深度神经网络架构。

ResNet的核心思想是引入了“残差学习”的概念来解决深度神经网络训练中的梯度消失/梯度爆炸问题,使得网络能够通过简单地增加层数来提高准确率,而不会导致训练困难。

2.2 原理

残差网络的核心原理是通过残差模块来构建深层网络。

在传统的神经网络中,每一层的输出是下一层的输入。

而在残差网络中,每一层的输入不仅会传递给下一层,还会通过跳跃连接(skip connection)直接传递给更深的层次。

这种设计允许梯度直接流过这些跳跃连接,从而缓解了深层网络中的梯度消失问题。

2.3 实现方式

残差网络的实现主要包括以下步骤:

  • 构建残差块
    • 每个残差块包含两个或三个卷积层,以及一个跨层的直接连接。
    • 对于两层残差块(称为basic block),输入首先经过一个卷积层(通常为3x3卷积),然后通过ReLU激活函数,再经过另一个卷积层,最后与原始输入(通过恒等映射或1x1卷积进行维度匹配)相加。
    • 对于三层残差块(称为bottleneck block),中间还包含一个1x1卷积层用于减少通道数,从而减少计算量。
  • 堆叠残差块:将多个残差块堆叠在一起,形成完整的残差网络。根据任务需求和网络深度,可以选择使用不同类型的残差块和堆叠方式。
  • 添加其他组件:在残差网络的开头和结尾,可以添加其他组件,如卷积层、池化层、全连接层等,以满足特定的任务需求。

2.4 算法公式

残差模块的基本形式可以用以下公式表示:

[ y = F ( x , W i ) + x ] [ \mathbf{y} = \mathcal{F}(\mathbf{x}, {W_i}) + \mathbf{x} ] [y=F(x,Wi)+x]

其中,

  • ( x ) (\mathbf{x}) (x) ( y ) (\mathbf{y}) (y)分别是模块的输入和输出,
  • ( F ( x (\mathcal{F}(\mathbf{x} (F(x, W i ) ) {W_i})) Wi))表示卷积层或全连接层的堆叠所进行的操作,
  • ( W i ) ({W_i}) (Wi)是这些层的权重, ( x ) (\mathbf{x}) (x)表示通过跳跃连接直接传递的输入。

在这里插入图片描述

2.5 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-05-02
# @Author : Carl_DJ

import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义残差块
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        # 第一个卷积层
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        # 第二个卷积层
        self.conv2 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

# 构建ResNet模型
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64
        # 初始卷积层
        self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channels)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # 残差层
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * block.expansion),
            )

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

# 实例化ResNet模型并应用于输入数据
def resnet18():
    return ResNet(BasicBlock, [2, 2, 2, 2])

model = resnet18()
print(model)

# 假设我们有一批大小为4的输入数据
input_tensor = torch.rand(4, 3, 224, 224)
output = model(input_tensor)
print(output.size())


代码解析:

  • 首先,定义了BasicBlock类,它是构成ResNet的基本残差块。
  • 然后,定义了ResNet类,它通过重复堆叠BasicBlock来构建整个网络。
    • 在ResNet类中,_make_layer方法用于生成每个残差层。
    • resnet18函数通过特定的配置来实例化一个18层深的ResNet模型。
  • 最后,代码实例化了一个模型,并对一个随机生成的输入张量进行了一次前向传播,以展示模型的使用方式。

3、总结

残差网络(ResNet)通过引入跳跃连接解决了深度神经网络训练中的关键问题,使得网络能够在不增加额外参数和计算复杂度的情况下增加深度,显著提高了深度学习模型的性能。

ResNet的成功推动了深度学习在诸多领域的应用,如图像分类、物体检测和语义分割等。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)测评一、二等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

  • 25
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值