题意:
给出一个结点带权的无向联通图;
删除其中一条边,使原图分成两个图,并是两个图总权值差最小;
求这个最小值;
(无解输出"impossible")
n<=10000;
题解:
首先考虑无解的情况,就是所有点之间都有两条以上道路可达,无论删去什么都并不能改变连通性;
这就是一个双联通的图,即在双联通的部分删边是不行的;
那么倘若我们跑tarjan缩点,将图变成一颗树;
然后删去图中的桥,这样就可以找到答案了;
ans=min(∑size - 2*size[y]);
y指某个子树的总权值(这里的子树指由整个的联通块构成的)
代码:
#include<stack>
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 10001
using namespace std;
stack<int>st;
vector<int>to[N],num[N];
int tot,cnt,ans,all;
int deep[N],low[N],belong[N];
int a[N],size[N];
bool ins[N],v[N];
void init(int n)
{
for(int i=0;i<n;i++) to[i].clear(),num[i].clear();
tot=cnt=all=0,ans=0x3f3f3f3f;
memset(deep,0,sizeof(deep));
memset(low,0,sizeof(low));
memset(v,0,sizeof(v));
memset(size,0,sizeof(size));
}
void tarjan(int x,int pre)
{
low[x]=deep[x]=++cnt;
ins[x]=1,st.push(x);
int i,y,k;
for(i=0;i<to[x].size();i++)
{
if(num[x][i]!=pre)
{
if(!deep[y=to[x][i]])
tarjan(y,num[x][i]),low[x]=min(low[x],low[y]);
else if(ins[y])
low[x]=min(low[x],deep[y]);
if(low[y]>deep[x])
{
tot++;
do
{
k=st.top();
st.pop(),ins[k]=0;
belong[k]=tot;
}
while(k!=y);
}
}
}
}
void dfs(int x)
{
size[belong[x]]+=a[x];
v[x]=1;
int i,y;
for(i=0;i<to[x].size();i++)
{
if(!v[y=to[x][i]])
{
dfs(y);
if(belong[x]!=belong[y])
size[belong[x]]+=size[belong[y]],
ans=min(ans,abs(all-size[belong[y]]*2));
}
}
}
int main()
{
int n,m,i,j,k,x,y;
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
for(i=0;i<n;i++)
scanf("%d",a+i),all+=a[i];
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
to[x].push_back(y),num[x].push_back(i);
to[y].push_back(x),num[y].push_back(i);
}
for(i=0;i<n;i++)
{
if(!deep[i])
tarjan(i,0);
}
tot++;
while(!st.empty())
{
k=st.top();
st.pop(),ins[k]=0;
belong[k]=tot;
}
if(tot==1)
{
puts("impossible");
continue;
}
dfs(0);
printf("%d\n",ans);
}
return 0;
}