hdu-2242 空调教室

31 篇文章 0 订阅
12 篇文章 0 订阅
题意:

给出一个结点带权的无向联通图;

删除其中一条边,使原图分成两个图,并是两个图总权值差最小;

求这个最小值;

    (无解输出"impossible")

n<=10000;


题解:

首先考虑无解的情况,就是所有点之间都有两条以上道路可达,无论删去什么都并不能改变连通性;

这就是一个双联通的图,即在双联通的部分删边是不行的;

那么倘若我们跑tarjan缩点,将图变成一颗树;

然后删去图中的桥,这样就可以找到答案了;

ans=min(∑size - 2*size[y]);

    y指某个子树的总权值(这里的子树指由整个的联通块构成的)


代码:


#include<stack>
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 10001
using namespace std;
stack<int>st;
vector<int>to[N],num[N];
int tot,cnt,ans,all;
int deep[N],low[N],belong[N];
int a[N],size[N];
bool ins[N],v[N];
void init(int n)
{
	for(int i=0;i<n;i++)	to[i].clear(),num[i].clear();
	tot=cnt=all=0,ans=0x3f3f3f3f;
	memset(deep,0,sizeof(deep));
	memset(low,0,sizeof(low));
	memset(v,0,sizeof(v));
	memset(size,0,sizeof(size));
}
void tarjan(int x,int pre)
{
	low[x]=deep[x]=++cnt;
	ins[x]=1,st.push(x);
	int i,y,k;
	for(i=0;i<to[x].size();i++)
	{
		if(num[x][i]!=pre)
		{
			if(!deep[y=to[x][i]])
				tarjan(y,num[x][i]),low[x]=min(low[x],low[y]);
			else if(ins[y])
				low[x]=min(low[x],deep[y]);
			if(low[y]>deep[x])
			{
				tot++;
				do
				{
					k=st.top();
					st.pop(),ins[k]=0;
					belong[k]=tot;
				}
				while(k!=y);
			}
		}
	}
}
void dfs(int x)
{
	size[belong[x]]+=a[x];
	v[x]=1;
	int i,y;
	for(i=0;i<to[x].size();i++)
	{
		if(!v[y=to[x][i]])
		{
			dfs(y);
			
			if(belong[x]!=belong[y])
				size[belong[x]]+=size[belong[y]],
				ans=min(ans,abs(all-size[belong[y]]*2));
		}
	}
}
int main()
{
	int n,m,i,j,k,x,y;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		init(n);
		for(i=0;i<n;i++)
			scanf("%d",a+i),all+=a[i];
		for(i=1;i<=m;i++)
		{
			scanf("%d%d",&x,&y);
			to[x].push_back(y),num[x].push_back(i);
			to[y].push_back(x),num[y].push_back(i);
		}
		for(i=0;i<n;i++)
		{
			if(!deep[i])
				tarjan(i,0);
		}
		tot++;
		while(!st.empty())
		{
			k=st.top();
			st.pop(),ins[k]=0;
			belong[k]=tot;
		}
		if(tot==1)
		{
			puts("impossible");
			continue;
		}
		dfs(0);
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值