bzoj-2301 Problem b

题意:

求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k;
1≤a≤b≤50000,1≤c≤d≤50000
1≤n≤50000,1≤k≤50000


题解:

首先可以把询问拆成四个,然后容斥一下就是答案
问题转化成求gcd(x,y)=k,1<=x<=n,1<=y<=m的(x,y)对数
令f(x)为满足条件的gcd(x,y)=x的(x,y)对数;
令F(x)为满足条件的x|gcd(x,y)的(x,y)对数;
那么显然有

而又因为


所以答案为:

有了这东西
枚举i=d/k,即

就可以O(n)搞出这道题了
然而暴力枚i不可取,多组数据教做人
发现

最多有√n级别的取值
那么直接枚举每个取值,对莫比乌斯函数求前缀和
然后用这个取值乘这一段的函数和,累加就是答案了
复杂度O(n+q√n);

这篇文章的排版是不是很魔性2333,其实本来是我ppt里的东西
强行粘出来弄几篇题解吧233


代码:


#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 51000
using namespace std;
typedef long long ll;
ll pri[N],tot;
ll miu[N],sum[N];
bool vis[N];
void init()
{
	miu[1]=1,sum[1]=1;
	for(ll i=2;i<N;i++)
	{
		if(!vis[i])
		{
			pri[++tot]=i;
			miu[i]=-1;
		}
		for(ll j=1;j<=tot&&i*pri[j]<N;j++)
		{
			vis[i*pri[j]]=1;
			if(i%pri[j]==0)
			{
				miu[i*pri[j]]=0;
				break;
			}
			miu[i*pri[j]]=-miu[i];
		}
		sum[i]=sum[i-1]+miu[i];
	}
}
ll mobius(ll n,ll m,ll k)
{
	ll ret=0,i,j,last;
	if(n>m)	swap(n,m);
	for(i=1;i*k<=n;i=last+1)
	{
		last=min(n/((n/(i*k))*k),m/(m/((i*k))*k));
		ret+=(n/(i*k))*(m/(i*k))*(sum[last]-sum[i-1]);
	}
	return ret;
}
int main()
{
	ll cs,T,a,b,c,d,k,i,j;
	init();
	scanf("%lld",&T);
	for(cs=1;cs<=T;cs++)
	{
		scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
		printf("%lld\n",mobius(b,d,k)-mobius(a-1,d,k)-mobius(c-1,b,k)+mobius(a-1,c-1,k));
	}
	return 0;
}



发布了216 篇原创文章 · 获赞 41 · 访问量 23万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览