题面
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
题解
不和前面那道POI的一模一样吗。。。
【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
在这个的基础上再用容斥原理随便搞一下就可以了。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 101000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int mu[MAX],pri[MAX],tot,s[MAX];
long long g[MAX],n,a,b,K,c,d;
bool zs[MAX];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=n;++i)s[i]=s[i-1]+mu[i];
}
long long Calc(int a,int b,int K)
{
a/=K;b/=K;
long long ans=0;
int i=1;
if(a>b)swap(a,b);
while(i<=a)
{
int j=min(a/(a/i),b/(b/i));
ans+=1ll*(s[j]-s[i-1])*(a/i)*(b/i);
i=j+1;
}
return ans;
}
int main()
{
n=100000;
Get();
int T=read();
while(T--)
{
a=read();b=read();c=read();d=read();K=read();
printf("%lld\n",Calc(b,d,K)-Calc(a-1,d,K)-Calc(c-1,b,K)+Calc(a-1,c-1,K));
}
return 0;
}