题意:
给出一个长度为n的字符串,求它的某个回文子串长度乘出现次数的最大值;
n<=300000;
题解:
据说这题用回文自动机回文树之类的东西有一些更优的解法?
然而回文自动机似乎是在这题之后被引入OI的23333;
所以还有一些听起来比较靠谱的解法。。
我们先考虑求出所有的回文子串,由于一些原因这些本质不同的回文子串最多有O(n)个;
利用manacher算法算出每个回文子串的位置与长度之后,考虑如何计算一个字符串的出现次数;
一个子串是后缀的前缀,那么两个相同的子串在进行后缀排序之后必定相邻;
有了这个性质,我们就可以借助后缀数组的height数组,来快速找出height数组上连续一段大于等于该字符串长度的个数;
找这个可以用RMQ预处理+二分左侧右侧长度实现 (不要吐槽我又求了一遍LCP);
这个个数乘上字符串长度就是答案了,注意极限情况可能爆int;
而且因为这题的时间复杂度是O(后缀数组nlogn+RMQ预处理nlogn+Manacher二分nlogn)所以隐藏常数巨大!
因此我们可以加一个小优化,在二分的时候,特判一下左右第一个是否满足大于等于字符串长度,如果不满足就不二分了;
这样就可以通过了,然而速度真是太慢啦2333;
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 300010
#define S 26
using namespace std;
typedef long long ll;
int n,sa[N],rank[N],h[N],tr[N],hash[N];
int f[N];
int mi[N][20],LG[N];
ll ans;
char str[N];
inline bool cmp(int x,int y,int len)
{
if(x+len>=n) return 0;
return rank[x]==rank[y]&&rank[x+len]==rank[y+len];
}
void getSA()
{
register int i;
int k,cnt;
for(i=0;i<n;i++) hash[str[i]-'a']++;
for(i=0,cnt=-1;i<S;i++) if(hash[i]) tr[i]=++cnt;
for(i=1;i<S;i++) hash[i]+=hash[i-1];
for(i=0;i<n;i++) rank[i]=tr[str[i]-'a'],sa[--hash[str[i]-'a']]=i;
for(k=2;cnt<n-1;k<<=1)
{
memset(hash,0,sizeof(int)*n);
for(i=0;i<n;i++) hash[rank[i]]++;
for(i=1;i<n;i++) hash[i]+=hash[i-1];
for(i=n-1;i>=0;i--) if(sa[i]>=k>>1) tr[sa[i]-(k>>1)]=--hash[rank[sa[i]-(k>>1)]];
for(i=1;i<=k>>1;i++) tr[n-i]=--hash[rank[n-i]];
for(i=0;i<n;i++) sa[tr[i]]=i;
for(i=1,cnt=0;i<n;i++)
tr[sa[i]]=cmp(sa[i-1],sa[i],k>>1)?cnt:++cnt;
memcpy(rank,tr,sizeof(int)*n);
}
for(i=0;i<n;i++)
{
if(rank[i])
{
for(k=max(h[rank[i-1]]-1,1);k<n;k++)
if(str[sa[rank[i]]+k-1]==str[sa[rank[i]-1]+k-1])
h[rank[i]]=k;
else break;
mi[rank[i]][0]=h[rank[i]];
}
}
}
inline int LCP(int x,int y)
{
if(x==y) return n-x;
if(rank[x]>rank[y])
swap(x,y);
int k=LG[rank[y]-rank[x]];
return min(mi[rank[x]+1][k],mi[rank[y]-(1<<k)+1][k]);
}
inline ll calc(int st,int len)
{
int ret=1,l,r,mid;
if(LCP(sa[rank[st]-1],st)>=len)
{
l=1,r=rank[st];
while(l<=r)
{
mid=l+r>>1;
if(LCP(sa[rank[st]-mid],st)>=len)
l=mid+1;
else
r=mid-1;
}
ret+=r;
}
if(LCP(sa[rank[st]+1],st)>=len)
{
l=1,r=n-rank[st]-1;
while(l<=r)
{
mid=l+r>>1;
if(LCP(sa[rank[st]+mid],st)>=len)
l=mid+1;
else
r=mid-1;
}
ret+=r;
}
return (ll)ret*len;
}
void manacher()
{
int i,ma,id;
for(i=0,ma=-1,id=0;i<n;i++)//ÆæÊý
{
f[i]=max(0,min(f[id+id-i],ma-i+1));
while(i+f[i]<n&&i-f[i]>=0&&str[i+f[i]]==str[i-f[i]])
{
f[i]++;
if(i+f[i]-1>ma)
{
ma=i+f[i]-1,id=i;
ans=max(ans,calc(i-f[i]+1,f[i]+f[i]-1));
}
}
}
f[0]=0;
for(i=0,ma=-1,id=0;i<n;i++)//żÊý
{
f[i]=max(0,min(f[id+id-i],ma-i+1));
while(i+f[i]<n&&i-f[i]-1>=0&&str[i+f[i]]==str[i-f[i]-1])
{
f[i]++;
if(i+f[i]>ma)
{
ma=i+f[i],id=i;
ans=max(ans,calc(i-f[i],f[i]+f[i]));
}
}
}
}
int main()
{
int i,j,k;
gets(str);
n=strlen(str);
getSA();
LG[1]=0;
for(i=2;i<=n;i++)
LG[i]=LG[i>>1]+1;
for(k=1;k<=19;k++)
for(i=1;i<n-(1<<k-1);i++)
mi[i][k]=min(mi[i][k-1],mi[i+(1<<k-1)][k-1]);
manacher();
printf("%lld\n",ans);
return 0;
}