神经网络优化蒸汽涡轮机性能

使用人工神经网络和电路设计提高火力发电厂蒸汽涡轮机的性能

霍沙姆·萨利姆,哈利德·法伊萨尔,和拉希勒·贾瓦德
机电工程系,技术大学,巴格达,伊拉克
通信地址应为拉希勒·贾瓦德;raheeljawad2016@gmail.com
收到日期:2018年5月12日;修改日期:2018年10月23日;接受日期:2018年10月29日;发表日期:2018年12月2日
学术编辑:陈世明
版权所有©2018年霍沙姆·萨利姆等。本文为知识共享署名许可协议下的开放获取文章,允许在任何媒介中不受限制地使用、传播和复制,只要正确引用原始作品。

为了提升蒸汽发电厂的性能,设计并实施了用于控制涡轮机的电路,并采用了人工神经网络技术。人工神经网络技术已在许多工业模型的实际控制中得到应用。人工神经网络已被用于控制位于巴格达的阿尔‐杜拉电厂中涡轮机的重要变量,例如压力、温度、转速和湿度。在本研究中,使用MATLAB程序(v2014a)中的Simulink模型,并应用了人工神经网络(ANN)。控制模型的方法是使用NARMA生成数据并训练网络。人工神经网络是离线的,需要数据来获得结果,并与实际发电厂的数据进行比较。输入变量的数值对人工神经网络隐藏层中节点数量和训练周期数量以及人工神经网络的性能都有较大影响。传感器电路包括变压器、直流电桥和电压调节器。将通过人工神经网络和电路建模得出的结果与实验数据进行比较,发现它们之间具有良好的一致性,并且实验数据与人工神经网络和电路设计预测结果之间的最大偏差小于1%。本文的新颖之处在于应用NARMA控制器以实现提升涡轮机性能的目的。

1. 引言

本研究采用AL‐Dura电厂型号为(160兆瓦)的蒸汽涡轮机,该蒸汽涡轮机用于将高压蒸汽中的热能转化为有用的机械功。该蒸汽涡轮机由三个部分组成,即高压、中压和低压部分;第一部分为高压部分,由两个水平剖分式外壳组成;内壳安装在内部,并在轴向固定,外壳则在各个方向上具有膨胀空间。第二部分是中低压部分,该部分为水平剖分式结构,并通过垂直法兰连接成三个部分。出口支管与冷凝器刚性连接,冷凝器支撑在弹簧上。在中间外壳中安装有第一和第二低压加热器的管束。各外壳通过导向键相互连接,而在低压外壳中心部分的轴向上设有固定点[1]。在本研究中,我们提出了蒸汽轮机发电厂的基本问题解决方案及腐蚀问题。该化学材料的机械性能影响汽轮机叶片的运行寿命。转子和盘片的应力腐蚀和开裂是汽轮机的主要问题。本研究讨论了蒸汽发生器部件修复焊接的历史,特别强调了有裂纹的蒸汽轮机叶片的修复焊接细节[2]。本研究在冷态条件下使用有限元计算程序计算了应力和温度,并采用通用斜率法和局部应力应变法估算了1000MW超超临界汽轮机转子的低周疲劳寿命损失[3]。本研究中我们使用人工神经网络,通过带外部输入的非线性自回归模型(NARX)建立汽轮机转子的数学模型,以实现对转子关键位置的温度和应力进行在线预测。电厂的测量包括汽轮机调节阀前的汽轮机高压级转子、转速、负荷、温度和压力。我们使用的有限元转子模型训练好的神经网络不仅具有汽轮机膨胀非线性的特性,还包含有限元精度、汽轮机内部瞬态条件下的非线性和热交换以及转子材料特性。

示意图0

与汽轮机膨胀非线性相关的非线性特性,还包括有限元精度、汽轮机内部瞬态条件下的热交换过程中的非线性以及转子材料特性。在汽轮机算法中,神经网络被用作控制器。在工业电厂中,神经网络被应用于汽轮机应力控制[4]。本研究采用自适应神经模糊推理系统(ANFIS)建模,以预测台湾国圣核电站1号机组汽轮机循环的汽轮发电机组输出。通过对2006年至2011年间收集的该电厂运行信息进行验证,并使用具有95%置信区间的线性回归模型进行分析。ANFIS的输入包括汽轮机循环模型的节流压力、给水流量、给水温度和凝汽器压力。结果表明,所提出的ANFIS能够准确可靠地展示汽轮机循环模型以计算汽轮发电机组输出,并将这些结果与热力学汽轮机循环模型进行了比较。该模型应用了商用软件PEPSE。神经模糊方法在使用国圣核电站实际运行数据时表现出良好的效果并能展示汽轮机循环模型[5]。

本文旨在通过使用人工神经网络(ANN)控制压力、温度、转速和湿度等多个参数,提高AL‐Dura电厂的性能。

2. 人工神经网络

人工神经网络试图模拟人类神经系统的一些特征。神经网络的起源可以追溯到20世纪40年代,当时麦克洛奇和皮茨建立了生物神经元的第一个数学模型。通过神经网络创建模型是使用分析工具来模拟人脑的认知功能。在其最一般的形式中,神经网络是一种旨在模拟大脑执行特定功能方式的系统或机器;人工神经网络的建模通过在数字计算机上的软件中进行模拟来实现。人工神经网络采用一种由被称为“神经元”的简单计算单元大规模互连的结构,以实现良好性能。人工神经网络是一种在代表某个问题的输入输出模式之间进行映射的系统。人工神经网络在训练过程中经过多次迭代学习信息。当学习过程结束后,人工神经网络便能够分类新信息、预测新行为或估计非线性函数问题。其结构由一组神经元(由函数表示)组成,这些神经元相互连接并组织成层[6–9]。

2.1. 人工神经网络(ANN)基础

人工神经网络可被定义为一种计算系统,它通过其动态状态对外部输入做出响应来处理数据。它由许多简单且高度互联的处理单元组成。图1显示了人工神经网络的组成部分。网络类型可以采用级联的前馈方式构建多层网络。一层的输出是下一层的输入。通过将输出值与期望输出值进行比较,可生成误差信号;该过程称为反向传播,用于调整网络权重。反向传播可推广至未包含在训练模式中的输入[10]。

3. 汽轮机控制系统仿真

由于蒸汽涡轮机在容量、应用和期望性能方面的成本效益,它已被广泛应用于发电厂;汽轮机结构提供了不同级别的复杂性,以提高热效率,因此蒸汽涡轮机由高压、中压和低压级组成。由于汽轮机结构的复杂性,使用人工神经网络研究蒸汽涡轮机的性能,并更难预测所提出控制系统对发电厂蒸汽涡轮机的影响,因此需要开发非线性分析模型。设计、综合以及执行实时仿真和监控可用于发电厂控制系统中的这些模型[11–17]。一个160兆瓦发电厂的蒸汽涡轮机包括抽汽、给水加热器、水分分离器及其相关动力设备。汽轮机配置及抽汽处的蒸汽条件。本研究中影响AL‐Dura电厂汽轮机的重要变量,如温度、压力、转速和湿度,通过建模并根据来自实际发电厂的数据,在基于运行确定的结构控制语言基础上,使用MATLAB程序(版本2014a)进行仿真。

4. 人工神经网络(ANN)的输入变量

影响发电厂运行的变量包括以下内容。

(a) 温度输入变量。为避免AL‐Dura发电厂蒸汽涡轮机叶片损坏,来自涡轮并进入涡轮的蒸汽涡轮机温度必须小于550∘℃。

(b) 压力输入变量。蒸汽涡轮机的安全运行压力小于140巴,该数值来自实际发电厂。

(c) 转速输入变量。转速是影响AL‐Dura电厂蒸汽涡轮机的一个重要变量,因为它影响机械功率,从而提高效率;对于涡轮机轴而言,转速必须超过3500转/分钟。

(d) 湿度输入变量。湿度是一个重要的变量,会对涡轮机内部叶片的旋转造成危害和影响。湿度值应小于0.12;来自实验数据的输入输出参数的数据范围用于神经网络训练,如表1所示。这些数据被分为50%用于训练,50%用于测试。

5. 实验设备

实验设备由接口部分、个人计算机、输入用户和控制器组成。本研究包括两个部分:硬件部分和软件部分。硬件部分用于温度、湿度、转速和压力传感器。这些信号的等效电路经过处理后传输到接口单元。在接口单元中,信号经过处理后输入计算机,随后通过一个根据系统要求设计的应用程序进行控制,从而向操作员提供信息,以便您做出正确的选择。每个传感器都包含一个电力变压器,用于增加或降低其供电电压和电流水平;直流电桥用于将信号转换为连续电压信号,以获得由1和0表示的信号逻辑值,其中1代表五伏特。

P T N H 输出
40 270 2550 0.035 0
45 285 2600 0.04 0
50 300 2650 0.045 0
55 315 2700 0.05 0
60 330 2750 0.055 0
65 345 2800 0.06 0
70 360 2850 0.065 0
75 375 2900 0.07 0
80 390 2950 0.075 0
85 405 3000 0.08 0
90 420 3050 0.085 1
95 435 3100 0.09 1
100 450 3150 0.095 1
105 465 3200 0.1 1
110 480 3250 0.105 1
115 495 3300 0.11 1
120 510 3350 0.115 1
125 525 3400 0.12 1
130 540 3450 0.125 0
135 555 3500 0.13 0

零表示零伏特。连续电压信号被输入到型号为7805的电压调节器(5伏特或零伏特)。其功能是提供稳定电压,作为稳压器使用时可能受限于确保输出保持在一定范围内。当传感器读数为高电平时,模拟信号将转换为数字信号。图2显示了传感电路的示意图及传感电路的实物照片。软件部分包括流程图以及使用MATLAB (2014a) 编写的算法程序。

示意图1

6. 使用神经网络的涡轮机模型

本方法中使用的神经网络控制器类型是非线性自回归移动平均(NARMA),该控制器被设计并用于控制涡轮机的压力、湿度、转速和温度。神经网络工具箱提供了一个演示模型,用于展示NARMA‐L2控制器;NARMA的目标是控制悬浮在电磁铁上方的磁铁的位置,其中磁铁被限制只能在垂直方向上移动;NARMA在MATLAB仿真的ANN工具箱中实现。在系统辨识中,建立了被控对象的神经网络模型。NARMA的控制器模块如图3所示。

示意图2

涡轮机模型的NARMA被控对象辨识框图通过插入被控对象输入和输出的最小值和最大值以及最小和最大间隔值(0.1秒和1秒)来调整参数以生成数据。隐藏层的大小、延迟的被控对象输入和输出的数量,采样间隔,最后训练函数为trainlm。然后根据所得到的被控对象模型的响应选择训练网络并进行显示。验证数据、训练数据和测试数据分别绘制在图4(a)和图4(b)中,展示了运行NARMA的流程图。

7. 结果与讨论

本研究基于实验装置的数据开发涡轮机模型,用于训练和测试神经网络NN模型,该模型使用MATLAB。为了在隐藏层神经元数量受限的情况下通过试错法平衡训练效率,并提高隐藏层中的节点数量以获得网络的良好精度。本文研究了具有两层(隐藏层)和3‐14个神经元的神经网络,均方误差结果列于表2中。

训练的目标是找到神经网络的最优解。图5显示了具有2个隐含层的神经网络的最佳训练性能,经过300个训练周期后。图6展示了实验数据与用于训练的NN预测之间的良好一致性。在程序中我们使用了两个隐藏层,但在NARMA中每个变量都使用14个隐含层进行控制。该数量的隐藏层得到了最低的错误率。

节点数量 训练均方误差 节点数量 训练均方误差 测试回归
3 7.325e‐06 3-5 4.85e‐06 1
5 2.966e‐06 3-7 2.03e‐06 1
9 9.195e‐06 3-9 1.95e‐06 1
11 8.164e‐06 3-11 8.609e‐06 1
14 9.962e‐06 3-14 1.667e‐06 1

8. AL‐Dura 电厂蒸汽涡轮机的Simulink模型

涡轮机的Simulink模型设计用于控制输入变量(温度、压力、转速和湿度),这些变量会影响AL‐Dura电厂中的蒸汽涡轮机。 示意图3 显示了使用NARMA的蒸汽涡轮机模型。在此图中,为了控制,我们建议为每个信号分别设计和构建一个ANN模型,然后在中央处理中将所有信号相加以减少用于决策的时间。该建议的系统表示发电厂涡轮机的信号,例如压力、温度、湿度和转速。在单一系统中处理所有信号需要很长时间,因为这需要重复所有系统中ANN的并对整个系统进行训练和学习直到做出决策。因此,该模型在稳态下工作;当某个信号发生问题、意外事故或变化时,通过忽略此情况、减少处理时间来解决问题,并且系统的所有部分保持在稳态。

9. 模型结果

(1) 温度。发电厂中涡轮机的温度应为550∘C,以确保涡轮机叶片和涡轮机设计在520∘C至 550∘C的温度范围内工作。图8显示了温度的输入变量。

(2) 转速。涡轮机在稳态下工作的转速为2500至3000转/分。图8显示了转速的输入变量。

(3) 湿度。蒸汽涡轮机在稳态下允许工作的湿度范围为0到0.12。图8显示了湿度的输入变量。

(4) 压力。压力在涡轮机的所有部分开始工作,从140巴开始,然后降低到6巴进入冷凝器。图8显示了AL‐Dura发电厂的压力输入变量。

示意图4

10. 实验电路结果

图9显示了来自实验装置的实际压力信号。该信号解释了涡轮机在稳态下工作的允许限值。压力随着温度的升高而增加。

示意图5

同时显示了来自实验电路的实际温度信号以及涡轮工作在500至550∘C之间的允许限值,以保护涡轮机免于爆炸和熔化。

同时,湿度信号来自实验装置。涡轮机在正常条件下运行的最大允许限值为0.12。当温度和压力升高时,湿度降低,从而保护涡轮机叶片免受腐蚀和侵蚀,并显示来自实验装置的实际转速信号。涡轮机在安全状态下运行的允许限值为2500转/分至3000转/分。

图10显示了人工神经网络与电路设计在涡轮机湿度方面的比较结果示例;两者之间的误差为1%。在使用电路进行工厂控制时,取得了良好的效果,因为该电路已实际应用于巴格达百事公司。

示意图6

11. 结论

将人工神经网络应用于过程控制,是通过准备充足的训练数据和节点数量来表征内部特征及连接自动化工程师的输入变量与输出变量之间关系的一种处理复杂问题的最佳方法,使自动化工程师能够基于其在被控对象中的信息和经验自主构建控制器;人工神经网络的训练依赖于输入变量的取值,这些输入变量影响神经网络的训练周期数量,通过在输入值与目标值之间采用最大最小归一化方法,并结合双曲正切函数,相较于其他归一化方法可有效缩短训练时间。该神经网络采用反向传播进行训练。算法;该技术控制来自实际装置(140巴,550摄氏度,0.12,300转/分)的最优值。

符号说明

变量
Wij:连接中的权重
X:神经网络输入
Yj:计算单元的输出

希腊符号
Θ:阈值

数据可用性
用于支持本研究发现的数据可根据要求从通讯作者处获取。

利益冲突
作者声明他们没有利益冲突。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值