水文数据中的常见假设检验方法
1. 假设检验概述
假设检验,也称为显著性检验,在水文学中被广泛应用,用于确定数据是否支持特定假设。它能让我们对水文现象进行统计推断,并从数据中得出结论。通过设计备择假设和原假设,我们可以根据观测结果检验模型预测的可信度。
1.1 假设检验的常见用途
- 比较两组样本差异 :确定两组样本的差异是否代表其总体的真实差异。例如,科学家可能会使用 t 检验来比较不同季节或地理区域的平均降水量。
- 评估变量间关系 :可以评估变量之间关系的强度或相关性程度,如通过皮尔逊相关检验评估蒸散量和温度之间的关系。还能确认变量间估计的回归系数是否具有统计学意义。
- 验证水文模型的合理性 :例如,使用卡方拟合优度检验来验证观测数据频率与特定水文模型预测频率的一致性。也可以使用柯尔莫哥洛夫 - 斯米尔诺夫检验来比较模型残差的经验分布和理论分布(通常为高斯分布),以验证假设并评估模型的有效性。
1.2 使用假设检验的注意事项
虽然假设检验能提供宝贵的统计见解,但结果本质上取决于样本大小和所选的显著性水平。一般来说,较大的样本能够检测到较小的统计效应。而常用的显著性水平(通常为 0.05)有些随意,它只是确定“统计显著性”的标准阈值。此外,未能否定原假设不应被误解为对其的确认,统计显著性并不一定意味着实际意义。
超级会员免费看
订阅专栏 解锁全文
485

被折叠的 条评论
为什么被折叠?



