【实例】逻辑回归模型判断乳腺癌类别

目录

一、逻辑回归模型介绍

1.1.逻辑回归模型的数学表达式

1.2 关于sigmoid函数

1.3 逻辑回归模型的损失函数

二、逻辑回归模型判断乳腺癌类别

2.1.乳腺癌数据介绍

2.2.逻辑回归模型实现代码


 声明:本文部分图文来自《老饼讲解-机器学习》https://ml.bbbdata.com

一、逻辑回归模型介绍

逻辑回归是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。它通过一个非线性的sigmoid函数,将线性回归模型得到的结果映射到[0,1]之间取值范围的值,并设置阈值为0.5,通过与阈值的比较达到二分类的效果。

1.1.逻辑回归模型的数学表达式

逻辑回归的模型表达式如下

P(x) = \textbf{Sigmoid}(WX+b) = \dfrac{1}{1+e^{-(w_1x_1+w_2x_2+....w_kx_k+b)}} 

逻辑回归模型先用wx+b 作为综合值的评估,再套用 sigmoid 函数将综合评估值转为概率。所以,逻辑回归本骨子里还是线性模型。

1.2 关于sigmoid函数

逻辑回归模型简单来说就是一个线性模型套上一个sigmoid函数,

sigmoid函数是一个S型函数,它的取值范围为(0,1),如下:

 Sigmoid函数是一种在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,常被用作将变量映射到0,1之间。

1.3 逻辑回归模型的损失函数

逻辑回归模型的损失函数为交叉熵损失函数,它的目的是最大化似然函数,

逻辑回归模型的损失函数表达式如下:

\displaystyle \textbf{L}(W)= \sum \limits _{i=1}^{m}\left [ \ln(1+e^{X_iW }) -\text{y}_iX_iW \right ]

需要注意的是,逻辑回归的损失函数是针对二分类问题的。对于多分类问题,可以使用one-vs-rest方法进行扩展。

逻辑回归更详细的原理与公式推导见:

老饼讲解|【原理】逻辑回归原理

二、逻辑回归模型判断乳腺癌类别

2.1.乳腺癌数据介绍

乳腺癌数据如下:


数据共150个样本,包含四个特征和乳腺癌类别
四个特征分别为:平均平滑度、平均紧凑度、平均凹面、平均凹点,
类别:0-恶性、1-良性
下面我们训练一个逻辑回归,用于预测乳腺癌是良性还是恶性

2.2.逻辑回归模型实现代码

使用乳腺癌数据,构建逻辑回归模型,在python中实现代码如下:

from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
import numpy as np
#----数据加载------
data = load_breast_cancer()
X    = data.data[:,4:8]
y    = data.target

np.random.seed(888)
#-----训练模型--------------------
clf = LogisticRegression(random_state=0)            
clf.fit(X,y) 
#------打印结果------------------------
print("模型参数:"+str(clf.coef_))
print("模型阈值:"+str(clf.intercept_))

pred_y      = clf.predict(X)              # 预测类别
print( "模型准确率:",(pred_y== y).sum()/len(y))

运行结果如下: 

模型参数:[[-0.53024026 -3.48636783 -6.89132654 -4.37965412]]
模型阈值:[1.80112869]
模型准确率: 0.8260105448154658

从结果可以看到,模型的预测准确率为82.6%,效果已经极为不错

进一步的,还可以用predict_proba查看模型对每个样本的预测概率

pred_prob_y    = clf.predict_proba(X)[:,1]   # 预测属于1类的概率

运行后结果如下:

  


编写不易,点赞收藏鼓励一下吧!

  • 21
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑回归模型是一种常用的机器学习算法,可以用来处理二分类问题。在 Python 中,可以使用 scikit-learn 库的 LogisticRegression 模型来实现逻辑回归。首先,需要自定义一组训练数据,包括输入特征和目标变量。然后,使用 LogisticRegression 类的 fit() 方法来训练模型。最后,可以使用 predict() 方法来进行预测。下面是一个逻辑回归模型的应用实例的 Python 代码: import numpy as np from sklearn.linear_model import LogisticRegression # 自定义训练数据 X = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([0, 1, 0]) # 创建逻辑回归模型对象 model = LogisticRegression() # 训练模型 model.fit(X, y) # 预测新样本 new_data = np.array([[7, 8], [9, 10]]) predictions = model.predict(new_data) # 打印预测结果 print(predictions) 这段代码中,首先导入了必要的库。然后,自定义了一组训练数据 X 和目标变量 y。接着,创建了一个 LogisticRegression 对象 model,并使用 fit() 方法对模型进行训练。最后,使用 predict() 方法对新样本进行预测,并打印预测结果。这个例子展示了如何使用 scikit-learn 库的 LogisticRegression 模型进行逻辑回归的应用实例。 另外,你还可以使用自定义的 train() 函数来实现逻辑回归模型的训练。该函数接受输入特征 x、目标变量 y、迭代次数 iter_max 和学习率 alpha 作为参数。在函数内部,通过迭代更新模型的权重 w,并返回训练后的权重。下面是一个 train() 函数的示例代码: import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def train(x, y, iter_max=1000, alpha=0.00001): size = np.shape(x) w = np.mat(np.ones((size, 1))) for _ in range(iter_max): p0 = sigmoid(w.T * x.T) w_derivative = (p0 - y) * x w = w - (alpha * w_derivative).T return w 这段代码中,train() 函数使用了 sigmoid 函数来计算激活值。然后,通过迭代更新权重 w,最终返回训练后的权重。你可以根据自己的需要调整迭代次数和学习率等参数。 最后,你可以使用 predict() 函数来进行逻辑回归模型的预测。该函数接受训练后的权重 weights 和输入特征 input_x 作为参数,并返回预测结果。下面是一个 predict() 函数的示例代码: import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def predict(weights, input_x): y = sigmoid(weights.T * input_x.T) return np.array((y.T > 0.5).reshape(-1)).astype(int) 这段代码中,predict() 函数使用了 sigmoid 函数来计算预测概率,并通过阈值判断样本类别。如果概率大于阈值 0.5,则预测为正类(1),否则预测为负类(0)。你可以根据自己的需求设置阈值。<span class="em">1</span><span class="em">2</span><span class="em">3</span>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值