题目描述
给你一个偶数 n ,已知存在一个长度为 n 的排列 perm ,其中 perm[i] == i(下标 从 0 开始 计数)。
一步操作中,你将创建一个新数组 arr ,对于每个 i :
如果 i % 2 == 0 ,那么 arr[i] = perm[i / 2]
如果 i % 2 == 1 ,那么 arr[i] = perm[n / 2 + (i - 1) / 2]
然后将 arr 赋值给 perm 。
要想使 perm 回到排列初始值,至少需要执行多少步操作?返回最小的 非零 操作步数。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-operations-to-reinitialize-a-permutation
实例
输入:n = 2
输出:1
解释:最初,perm = [0,1]
第 1 步操作后,perm = [0,1]
所以,仅需执行 1 步操作
输入:n = 4
输出:2
解释:最初,perm = [0,1,2,3]
第 1 步操作后,perm = [0,2,1,3]
第 2 步操作后,perm = [0,1,2,3]
所以,仅需执行 2 步操作
题目分析
首先先进行推演,我们可以发现每次一步操作都是将奇数位置排在前面,偶数位置排在后面,为此可以得到每步操作,除了头部和尾部不会移动外,其它的值都会产生一步移动,从而我们可以选出一个计算。如代码:
/**
* @param {number} n
* @return {number}
*/
var reinitializePermutation = function(n) {
//互换二分操作
let tmp = 1;
var count = 1;
while(true){
if(tmp % 2 == 1){
tmp = n /2 + (tmp-1) /2;
}else{
tmp = tmp / 2;
}
if(tmp == 1){
break;
}
count++;
}
return count;
};