HDU 2897 邂逅明下 博弈

题意:一堆石子n个,A,B两人轮流从中取,每次取的石子必须在区间[p,q]内,若剩下的石子少于p个,

取石者须全部取完。最后取石子的者输。给出n,p,q,问先取者是否有必胜策略?

思路:巴什博弈变形

证明:假设先手为A,后手为B,初始n个,除最后一次每次取的石子个数必须

在区间[p,q]内,则:

1.若当前石子共有n = (p+q)*k个,则A必胜,必胜策略为:

A第一次取q个,以后每次若B取m个,A取(p+q-m)个,如此最后必剩下p个给B,A胜

2.若n = (p+q)*k+r,(1<r<=p),则B必胜,必胜策略为:

每次取石子活动中,若A取m个,则B取(p+q-m)个,那么最后必剩下r个给A,

此时r<=p,A只能一次取完,B胜

3.若n = (p+q)*k+r,(p<r<p+q),则A必胜,必胜策略为:

A第一次取t(1<r-t<=p)个,以后每次若B取m个,A取(p+q-m)个,

那么最后必剩下1<r-t<=p个给B,A胜


开始自己也想到了巴什博弈但是没有想到这么多,突然发现博弈真的很好玩。。



Description

当日遇到月,于是有了明。当我遇到了你,便成了侣。 
那天,日月相会,我见到了你。而且,大地失去了光辉,你我是否成侣?这注定是个凄美的故事。(以上是废话) 
小t和所有世俗的人们一样,期待那百年难遇的日食。驻足街头看天,看日月渐渐走近,小t的脖子那个酸呀(他坚持这个姿势已经有半个多小时啦)。他低下仰起的头,环顾四周。忽然发现身边竟站着位漂亮的mm。天渐渐暗下,这mm在这街头竟然如此耀眼,她是天使吗?站着小t身边的天使。 
小t对mm惊呼:“缘分呐~~”。mm却毫不含糊:“是啊,500年一遇哦!”(此后省略5000字….) 
小t赶紧向mm要联系方式,可mm说:“我和你玩个游戏吧,赢了,我就把我的手机号告诉你。”小t,心想天下哪有题目能难倒我呢,便满口答应下来。mm开始说游戏规则:“我有一堆硬币,一共7枚,从这个硬币堆里取硬币,一次最少取2枚,最多4枚,如果剩下少于2枚就要一次取完。我和你轮流取,直到堆里的硬币取完,最后一次取硬币的算输。我玩过这个游戏好多次了,就让让你,让你先取吧~” 
小t掐指一算,不对呀,这是不可能的任务么。小t露出得意的笑:“还是mm优先啦,呵呵~”mm霎时愣住了,想是对小t的反应出乎意料吧。 
她却也不生气:“好小子,挺聪明呢,要不这样吧,你把我的邮箱给我,我给你发个文本,每行有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完。两人轮流取,直到堆里的硬币取完,最后一次取硬币的算输。对于每一行的三个数字,给出先取的人是否有必胜策略,如果有回答WIN,否则回答LOST。你把对应的答案发给我,如果你能在今天晚上8点以前发给我正确答案,或许我们明天下午可以再见。” 
小t二话没说,将自己的邮箱给了mm。当他兴冲冲得赶回家,上网看邮箱,哇!mm的邮件已经到了。他发现文本长达100000行,每行的三个数字都很大,但是都是不超过65536的整数。小t看表已经下午6点了,要想手工算出所有结果,看来是不可能了。你能帮帮他,让他再见到那个mm吗? 
 

Input

不超过100000行,每行三个正整数n,p,q。
 

Output

对应每行输入,按前面介绍的游戏规则,判断先取者是否有必胜策略。输出WIN或者LOST。
 

Sample Input

       
       
7 2 4 6 2 4
 

Sample Output

       
       
LOST WIN
 

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

int main()
{
    int n,m,t;
    while(~scanf("%d %d %d",&n,&m,&t))
    {
       if(n%(m+t)==0)
       printf("WIN\n");
       else  if(n%(m+t)<=m)
       printf("LOST\n");
       else
       printf("WIN\n");
    }
    return 0;
}

网上有打表求SG的函数的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值