序列 计蒜客

有一个整数序列,它的每个数各不相同,我们不知道它的长度是多少(即整数个数),但我们知道在某些区间中间至少有多少个整数,用 (L_i,R_i,C_i)(Li​,Ri​,Ci​) 来描述,表示这个整数序列中至少有 C_iCi​ 个数来自区间 [L_i,R_i][Li​,Ri​],给出若干个这样的区间,问这个整数序列的长度最少能为多少?

输入格式

第一行一个整数 N\ (1\le N \le 1000)N (1≤N≤1000),表示区间个数;

接下来 NN 行,每行三个整数L_i,R_i,C_i\ (1\le L_i\le R_i\le 1000,1\le C_i \le R_i-L_i+1)Li​,Ri​,Ci​ (1≤Li​≤Ri​≤1000,1≤Ci​≤Ri​−Li​+1),描述一个区间和区间内数至少有 C_iCi​ 个,相邻两数之间以一个空格分隔。

输出格式

一个数,表示该整数序列的最小长度。

#include<cstdio>
#include<algorithm>
using namespace std;
struct node {
	int l,r,c;
}e[1010];
int n,ans;
bool v[1010];
bool cmp(struct node a,struct node b) {
    return a.r<b.r;
}
int main() {
    freopen("sequence.in","r",stdin);
    freopen("sequence.out","w",stdout);
	scanf("%d",&n);
	for(int i=1;i<=n;i++) {
		scanf("%d%d%d",&e[i].l,&e[i].r,&e[i].c);
	}
	sort(e+1,e+n+1,cmp);
	for(int i=1;i<=n;i++) {
		int tot=0;
		for(int j=e[i].l;j<=e[i].r;j++) {
			if(v[j]) tot++;
		}
		if(tot<e[i].c) {
			for(int j=e[i].r;j>=e[i].l;j--) {
				if(!v[j]) {
					v[j]=1,tot++,ans++;
					if(tot==e[i].c) break;
				}
			}
		}
	}
	printf("%d",ans);
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值