mPEG-FITC,Methoxy-PEG-Fluorescein常用于细胞生物学和纳米技术领域

【试剂详情】

英文名称

mPEG-FITC,mPEG-Fluorescein,

Methoxy-PEG-FITC,Methoxy-PEG-Fluorescein

中文名称

聚乙二醇单甲醚荧光素,甲氧基-聚乙二醇-荧光素

外观性状

由分子量决定,液体或者固体

分子量

0.4k,0.6k,1k,2k,3.4k,5k,10k(可定制)

溶解性

溶于水,

溶于DMF、DMSO等部分有机溶液

规格

可按需包装定制

纯度

95%+

储存条件

干燥、避光,温度不超-20℃

注意事项

现配现用,不可频繁解冻

【结构式】西安凯新生物科技mPEG-FITC结构式

【试剂介绍】

mPEG-Fluorescein,甲氧基-聚乙二醇-荧光素,是一种带有荧光素染料的线性单功能PEG试剂。荧光素,FITC是生物学中常用的荧光示踪剂,常用于染色细胞、组织、生物标记物或纳米粒子。mPEG-Fluorescein具有特定的吸收和发射波长,使其在特定光线下能够发出荧光,便于观察和追踪。此外,它还可以与蛋白质紧密结合,形成具有荧光特性的蛋白质复合物,进而用于蛋白质表达、定位等方面的研究。这种化合物在生物学研究中,特别是在细胞生物学和纳米技术领域,具有广泛的应用价值。

【相关试剂】

Pyrene-PEG-Pyrene
Py-PEG-Py
Bis Py-PEG
FITC-PEG-FITC
Fluorescein-PEG-Fluorescein
Alexa fluor 680-PEG-Biotin
AF680-PEG-Biotin
RB-PEG-RB
Rhodamine B-PEG-Rhodamine B
Alexa fluor 647-PEG-Biotin
AF647-PEG-Biotin
Alexa fluor 488-PEG-Biotin
AF488-PEG-Biotin
Vinylsulfone-PEG-fluorescein
VS-PEG-FITC
Stearic acid-PEG-Fluorescein
STA-PEG-FITC
Retinoic acid-PEG-FITC
Fluorescein-PEG-Retinoic acid

注:该试剂仅用于的科学研究,不能用于人体实验或其他治疗型用途。

本文试剂资料由西安凯新生物科技有限公司小华编辑整理。

OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到二值图像。最后,根据二值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对二值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对二值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值