主要是定义在main.py中。
这段代码实现了一个基于 FastAPI 框架的服务器应用,用于处理聊天数据并生成响应。以下是代码的主要组成部分和详细描述:
1. 导入模块和设置日志:
导入各种所需库和模块。配置 `loguru` 库用于日志记录,设置日志文件的存储路径和记录级别。
2. FastAPI 应用初始化:
3. 消息存储:
初始化 `MessageStore` 类的实例,用于存储和管理聊天消息。
4. API 路由定义:
定义 /config 路由,返回服务的配置信息。
定义 /chat-process 路由,用于接收聊天请求数据,处理聊天逻辑,并返回生成的响应。
5. 聊天处理逻辑:
process 函数处理聊天逻辑,包括消息的验证、历史消息的组织、生成响应等。
使用迭代器 stream_ai_response 从模型获取响应,并逐条发送。
- 特定的逻辑处理如提取城市和模块信息,并根据这些信息生成特定的响应。
6. **异常处理**:
- 使用 `try-except` 结构来处理可能发生的错误,并记录错误信息。
7. 模型和令牌器:
使用 transformers库加载预训练模型和令牌器,用于生成聊天响应。
8. 服务器启动:
使用 uvicorn 作为 ASGI 服务器来运行 FastAPI 应用,通过命令行参数指定服务器的配置,如端口号和主机地址。
9. 主函数:
解析命令行参数,并根据这些参数初始化和运行 FastAPI 服务器。