题目
输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整/数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
思路
思路一
分析规律,从第一个数字开始累加,若走到某一个数字时,前面的累加和为负数,说明不能继续累加了,要从当前数字重新开始累加。在累加过程中,将每次累加和的最大值记录下来,遍历完成后,返回该数字。
思路二
利用动态规划,用函数f(i)表示第i个数字结尾的数组的最大和。因此对于整个数组的子数组最大和,只要求max(f(i))。对于f(i)的递推公式:
f(i)=array[i] (i=0或f(i-1)<0)
f(i)=array[i]+f(i-1) (i>0且f(i-1)>0)
测试用例
1.功能测试(输入数组有正有负,全负数,全正数)
2.特殊输入测试(null)
Java实现
实现一
public class GreatestSumOfSubarrays {
boolean InvalidInput = false;
public int FindGreatestSumOfSubArray(int[] array) {
if(array==null || array.length<=0){
InvalidInput = true;
return 0;
}
InvalidInput = false;
int sum=array[0];
int maxSum=array[0];
for(int i=1;i<array.length;i++){
if(sum<0)
sum=array[i];
else
sum+=array[i];
if(sum>maxSum)
maxSum=sum;
}
return maxSum;
}
}
实现二
public class FindGreatestSumOfSubArray {
public int FindGreatestSumOfSubArray(int[] array) {
int maxLen = Integer.MIN_VALUE;
if (array.length <= 0) {
return maxLen;
}
int[] max = new int[array.length];
for (int i = 0; i < array.length; i++) {
if (i == 0 || max[i-1] < 0) {
max[i] = array[i];
} else if (i > 0 && max[i-1] > 0) {
max[i] = max[i-1] + array[i];
}
if (max[i] > maxLen) {
maxLen = max[i];
}
}
return maxLen;
}
public static void main(String[] args) {
// int [] array = {6, -3, -2, 7, -15, 1, 2, 2};
int [] array = {-2, -8, -1, -5, -9};
FindGreatestSumOfSubArray findGreatestSumOfSubArray = new FindGreatestSumOfSubArray();
int max = findGreatestSumOfSubArray.FindGreatestSumOfSubArray(array);
System.out.println(max);
}
}
收获
从上面代码,发现,思路一和思路二的实现方式是一样的。可以说是异曲同工。