剑指offer:面试题42:连续子数组的最大和

题目

输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整/数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

思路

思路一

分析规律,从第一个数字开始累加,若走到某一个数字时,前面的累加和为负数,说明不能继续累加了,要从当前数字重新开始累加。在累加过程中,将每次累加和的最大值记录下来,遍历完成后,返回该数字。

思路二

利用动态规划,用函数f(i)表示第i个数字结尾的数组的最大和。因此对于整个数组的子数组最大和,只要求max(f(i))。对于f(i)的递推公式:

f(i)=array[i]         (i=0或f(i-1)<0)
f(i)=array[i]+f(i-1)  (i>0且f(i-1)>0)

测试用例

1.功能测试(输入数组有正有负,全负数,全正数)
2.特殊输入测试(null)

Java实现

实现一

public class GreatestSumOfSubarrays {
    boolean InvalidInput = false;
    public int FindGreatestSumOfSubArray(int[] array) {
        if(array==null || array.length<=0){
            InvalidInput = true;
            return 0;
        }
        InvalidInput = false;
        int sum=array[0];
        int maxSum=array[0];
        for(int i=1;i<array.length;i++){
            if(sum<0)
                sum=array[i];
            else
                sum+=array[i];
            if(sum>maxSum)
                maxSum=sum;
        }
        return maxSum;
    }
}

实现二

public class FindGreatestSumOfSubArray {
    public int FindGreatestSumOfSubArray(int[] array) {
        int maxLen = Integer.MIN_VALUE;
        if (array.length <= 0) {
            return maxLen;
        }
        int[] max = new int[array.length];
        for (int i = 0; i < array.length; i++) {
            if (i == 0 || max[i-1] < 0) {
                max[i] = array[i];
            } else if (i > 0 && max[i-1] > 0) {
                max[i] = max[i-1] + array[i];
            }
            if (max[i] > maxLen) {
                maxLen = max[i];
            }
        }
        return maxLen;
    }

    public static void main(String[] args) {
//        int [] array = {6, -3, -2, 7, -15, 1, 2, 2};
        int [] array = {-2, -8, -1, -5, -9};
        FindGreatestSumOfSubArray findGreatestSumOfSubArray = new FindGreatestSumOfSubArray();
        int max = findGreatestSumOfSubArray.FindGreatestSumOfSubArray(array);
        System.out.println(max);
    }
}

收获

从上面代码,发现,思路一和思路二的实现方式是一样的。可以说是异曲同工。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值