day30|332.重新安排行程 ● 51. N皇后 ● 37. 解数独

文章介绍了两种使用回溯算法解决经典问题的方法:一是N皇后问题,通过判断和放置皇后,递归地尝试所有可能的解决方案;二是解数独,通过遍历空格并验证每个数字是否合适,同样采用递归回溯策略。
摘要由CSDN通过智能技术生成

332.重新安排行程

51. N皇后

主要在isValid的判断上

class Solution {
public:
    vector<vector<string>> result;
    void backtracking(int n,int row,vector<string>& chessboard){
        if(row == n){
            result.push_back(chessboard);
            return;
        }
        for (int col = 0; col < n; col++) {
            if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
                chessboard[row][col] = 'Q'; // 放置皇后
                backtracking(n, row + 1, chessboard);
                chessboard[row][col] = '.'; // 回溯,撤销皇后
            }
        }
    }
    bool isValid(int row, int col, vector<string>& chessboard, int n) {
        // 检查列
        for (int i = 0; i < row; i++) { // 这是一个剪枝
            if (chessboard[i][col] == 'Q') {
                return false;
            }
        }
        // 检查 45度角是否有皇后
        for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }
        // 检查 135度角是否有皇后
        for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
            if (chessboard[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }
    vector<vector<string>> solveNQueens(int n) {
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

37. 解数独

虽然代码比较复杂,但是思路很清晰

class Solution {
public:
    bool backtracking(vector<vector<char>>& board) {
        for (int i = 0; i < board.size(); i++) {        // 遍历行
            for (int j = 0; j < board[0].size(); j++) { // 遍历列
                if (board[i][j] == '.') {
                    for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                        if (isValid(i, j, k, board)) {
                            board[i][j] = k;                // 放置k
                            if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                            board[i][j] = '.';              // 回溯,撤销k
                        }
                    }
                    return false;  // 9个数都试完了,都不行,那么就返回false 
                }                
            }
        }
        return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
    }
    bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}

    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值