派大蒜
码龄5年
关注
提问 私信
  • 博客:46,241
    46,241
    总访问量
  • 72
    原创
  • 38,715
    排名
  • 784
    粉丝
  • 59
    铁粉
  • 学习成就

个人简介:怎么有人不爱大蒜!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2020-03-13
博客简介:

m0_46554918的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    601
    当月
    7
个人成就
  • 获得592次点赞
  • 内容获得34次评论
  • 获得532次收藏
创作历程
  • 65篇
    2024年
  • 5篇
    2023年
  • 1篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • 科研路上小进步
    1篇
  • 联邦学习
    12篇
  • 饭碗
    1篇
  • 二月红
    52篇
  • 拯救软件
    1篇
  • 数据结构
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

zotero WebDAV同步忘记密码

找到应用密码。
原创
发布博客 2024.10.05 ·
324 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【回忆版】数据科学思维与大数据智能分析 2024考试

1.对数变换对大数值的范围进行,对小数值的范围进行2.提取出大量与相关联的虚假模式,即(cross-support)模式3.信息论中()4.几种尺度中定性分析的是?定量分析的是?5.包含洞见的分析叫什么?然后包含先见的分析叫什么?包含后见的分析叫什么?6.奇异值分解包含三个步骤,(旋转,拉伸,旋转),2个参数包含多少(4)?
原创
发布博客 2024.09.05 ·
424 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

[论文阅读|异步FL]Asynchronous Wireless Federated Learning with Probabilistic Client Selection

从图 9 可以看出,在场景 1 中,贪心方案多次选择极度分布的客户端,而在场景 2 中,极度分布的客户端被完全忽略,说明贪心方案只会天真地选择通道条件好的客户端,从而导致客户端参与不公平,使全局模型向局部最优漂移。先对给定 (α, β, γ) 的内层凸问题(P3)和(P4)进行最优解,然后用改进的牛顿法求解外层问题,其中两层问题在一个循环中交替求解,最终得到问题(P2)的全局最优解。当(α, β, γ) = (α, β, γ)时,问题(P1)和问题(P2)具有相同的最优解(p∗,w∗)。
原创
发布博客 2024.07.11 ·
924 阅读 ·
18 点赞 ·
1 评论 ·
19 收藏

【论文阅读|异步联邦】FedASMU重读

但如果所有用户都在训练的时候请求新的全局模型,如果是同时申请,这样的状况,本文相当于只在本地聚合时多加了按权分配的策略,缓解了模型陈旧。表示 RL 训练过程的学习率,L 表示本地 epoch 的最大次数,∫L 对应第 L 个本地 epoch 后发送请求(1) 或 不发送请求(0) 的决定,bt 是减少模型偏差的基值。o 为全局模型的版本,l 为局部 epoch 个数,ηi 为设备 i 上的学习率,∇Fi(·) 为基于 Di 中无偏采样的小批 ζl−1 的梯度。元模型和局部模型都会生成每个时隙的概率。
原创
发布博客 2024.07.08 ·
1143 阅读 ·
16 点赞 ·
1 评论 ·
27 收藏

【论文笔记|异步联邦】Time-Sensitive Learning for Heterogeneous Federated Edge Intelligence

本文解决方案与最近的工作比较,表V,给出了在两个不同的数据集MNIST和交通数据下,使用我们提出的解决方案和[34]中提出的基于调度的方法,模型训练过程的总体耗时,在场景(a)和(d)中,目标模型精度分别为83.30%和80.43%。我们考虑手写数字数据集,并假设每个边缘服务器只有与单个数字相关的数据样本,而三个低性能边缘服务器(即离散者(树莓派3a))的数据样本与非唯一数字相关,即存在其他边缘服务器(树莓派4B)具有相同数字的数据样本。本文的目标:在保证模型训练精度的同时,最小化训练时间。
原创
发布博客 2024.07.08 ·
1104 阅读 ·
22 点赞 ·
1 评论 ·
26 收藏

【论文阅读|异步联邦】HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness

在同一局域网 LAN 环境下,模型训练精度高,收敛速度快,更需要在边缘节点和客户端之间进行同步模型聚合在复杂的广域网 WAN 环境下,云端的模型训练存在通信瓶颈(不同边缘的客户端大小不同,远程传输时间波动很大,边缘模型聚合时间也不同),有严重的掉队问题。采用异步聚合减少中心服务器和边缘节点之间模型更新的等待时间,缓解掉队问题。
原创
发布博客 2024.06.14 ·
1194 阅读 ·
15 点赞 ·
1 评论 ·
26 收藏

【论文阅读 |异步联邦】GitFL: Uncertainty-Aware Real-Time Asynchronous Federated Learning using Version Control

一句话总结:模仿 git 实现版本控制,利用 DRL 实现客户选择,平衡分支模型的版本,解决全局模型不能充分地从掉队者那里学习知识的问题。
原创
发布博客 2024.06.01 ·
782 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

【论文阅读 | 异步联邦】FedLC: Accelerating Asynchronous Federated Learning in Edge Computing

考虑计算、通信资源限制,利用 需求列表动态选择 k 个进行交互的设备 ,最大效益 实现在 边缘设备间 的 本地协作
原创
发布博客 2024.05.24 ·
489 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

【论文阅读 | 异步联邦】Adaptive Asynchronous Federated Learning in Resource-Constrained Edge Computing

考虑带宽资源限制,自适应的调整每个训练周期中参与全局模型聚合的本地更新模型的比例 at。
原创
发布博客 2024.05.18 ·
989 阅读 ·
25 点赞 ·
0 评论 ·
25 收藏

【论文笔记 | 异步联邦】FedSA

FedSA:一种处理的异步联邦算法。
原创
发布博客 2024.05.08 ·
2015 阅读 ·
35 点赞 ·
1 评论 ·
13 收藏

【论文笔记 | 异步联邦】PORT:How Asynchronous can Federated Learning Be?

现有的异步FL文献中设计的启发式方法都只反映设计空间中的点解决方案,并且在一些情况下未能激励他们的设计选择。由于测量训练时间的随机性,在PLATO中没有激活可重复性模式,PORT 和 FedBuff 等竞争对手之间的比较可能会因不同的数据集和运行而有所不同。最后,当服务器聚合迄今为止接收到的模型更新时(这些更新本质上是基于不同的全局模型的),服务器应该如何将聚合权重分配给每个客户机。因此,不能清楚在冲突的设计决策之间的最佳权衡是什么,以及在同步和异步机制之间的整个范围内的最佳点是什么。
原创
发布博客 2024.04.26 ·
1567 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

【论文笔记 | 异步联邦】 FedBuff

最优的服务器学习率随着并发性的增加而增加,高并发性意味着对更多用户进行聚合,这样能够减少方差,使服务器“迈出”更大的步,减少达到目标精度所需的轮数。同步 FL ,随训练过程中的客户端数量的增多,模型性能 和 训练速度 的收益 会下降,类似于大批量训练;每次客户端更新完成都强制服务器更新,这样的聚合方式不满足安全聚合的条件,此外,在AsyncFL中提供用户级DP仅适用于本地差分隐私(LDP),其中客户端剪辑模型更新并在将其发送到 Server 之前在本地添加噪声。用三种不同的种子重复每个实验,并取平均值。
原创
发布博客 2024.04.22 ·
1217 阅读 ·
27 点赞 ·
0 评论 ·
10 收藏

【论文笔记 | 异步联邦】Asynchronous Federated Optimization

Asynchronous Federated Optimization,OPT2020: 12th Annual Workshop on Optimization for Machine Learning,不属于ccfa。
原创
发布博客 2024.04.16 ·
1540 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

【论文笔记 | 异步联邦】FedASMU: Efficient Asynchronous Federated Learning with Dynamic Staleness-Aware Model

The intelligent time slot selector 由 Server 的 元模型 和 每个设备上的本地模型 组成,元模型为每个设备生成初始时隙决策,并在设备执行第一次局部训练时更新。培训过程由多个全局轮次组成。θt 表示元模型第 t 次更新后元模型中的参数,ηRL表示 RL 训练过程的学习率,L 表示本地 epoch 的最大次数,∫L 对应第 L。o 为全局模型的版本,l 为局部 epoch 个数,ηi 为设备 i 上的学习率,∇Fi(·) 为基于 Di 中无偏采样的小批 ζl−1。
原创
发布博客 2024.04.11 ·
1100 阅读 ·
9 点赞 ·
0 评论 ·
31 收藏

黑马程序员 Java 入门 笔记

一、基础概念。
原创
发布博客 2024.03.25 ·
522 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

训练营总结

这是我第一次开始刷算法题,在动手刷题之前光是想想这件事,就非常地畏惧。一开始我也没抱着一定要刷完的心态,想着给自己一个机会,走到哪里算哪里。但是群里的氛围很好,刚进群的第一天,我在群里顺手发了自己没有什么信心的话,就有小伙伴鼓励我说,就算扛着也要把我带着打完这两个月的卡,当时就觉得我一定要跟上。后来中间也因为一些事情断断续续地停了一段时间,好在后来会慢慢补上。
原创
发布博客 2024.02.29 ·
144 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Day 64 | 单调栈 84.柱状图中最大的矩形

【代码】Day 64 | 单调栈 84.柱状图中最大的矩形。
原创
发布博客 2024.02.29 ·
266 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Day 63 单调栈 503.下一个更大元素II 、 42. 接雨水

【代码】Day 63 单调栈 503.下一个更大元素II 、 42. 接雨水。
原创
发布博客 2024.02.29 ·
187 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Day 62 | 单调栈 739. 每日温度 、496.下一个更大元素 I

【代码】Day 62 | 单调栈 739. 每日温度 、496.下一个更大元素 I。
原创
发布博客 2024.02.29 ·
289 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Day 60 | 动态规划 647. 回文子串 、 516.最长回文子序列 、动态规划总结篇

文章讲解。
原创
发布博客 2024.02.28 ·
579 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多