PyTorch官宣:告别CUDA,GPU推理迎来Triton加速新时代 | 最新快讯

  新智元报道

  编辑:乔杨 Frey

  用英伟达的 GPU,但可以不用 CUDA?PyTorch 官宣,借助 OpenAI 开发的 Triton 语言编写内核来加速 LLM 推理,可以实现和 CUDA 类似甚至更佳的性能。

  试问,有多少机器学习小白曾被深度学习框架和 CUDA 的兼容问题所困扰?

  又有多少开发者曾因为频频闪烁的警报「CUDA 版本必须与安装的 PyTorch 匹配!!!」而企图炸键盘?

  无论是 TensorFlow 还是 Pytorch,GPU 和 CUDA 搭配的概念早已深入骨髓。

  如果我说,就在昨天,有款为 LLM「量身定做」的 CUDA-free 推理上新了!你激不激动?

  原文地址:CUDA-Free Inference for LLMs | PyTorch

  那么,让我们紧跟 Pytorch 的官方技术博客,一探究竟!看看它是如何将「自由」变为现实!

  GPU 的好搭子 CUDA

  CUDA(Compute Unified Device Architecture)到底是何方神物?为何被视为 GPU 的好搭子,LLMs 的「利器」?

  它是由英伟达开发的用于并行计算平台和应用程序的编程 API,让开发者能通过 GPU 开展高性能计算,包括:

  1. 多个能并行处理任务的核心,实现多线程

  2. 多种高效管理 GPU 内存的方法,如全局内存、共享内存和常量内存

  3. 创建并管理多条并行线程,提高数据处理效率

  4. 编译器、调试器和性能分析工具组成的工具链,,帮助开发者优化代码

  简而言之,CUDA 使 GPU 加速 LLM 训练变为现实,大幅缩短了训练时间。

  100% 的 Triton 内核

  Pytorch 最近发表了一篇技术博客,他们以两个模型——Llama3-8B 和 IBM 的 Granite-8B Code 为例,100% 使用 Triton 内核实现了 FP16 推理。

  Granite-8B Code 是由 IBM 开发的一种仅限解码器的代码模型,专为代码生成任务设计。

  仓库地址:https://huggingface.co/ibm-granite/granite-8b-code-base-4k

  值得注意的是,PyTorch 指出他们实现了 F16 推理,也就是使用半精度浮点计算。

  FP32 单精度浮点数

  F16 半精度浮点数

  相对于 FP32,使用 FP16 可以将位数减少一半,因而减少了所需内存,允许使用更大的模型或更大的批大小,且数据传输速度更快。

  与 F32 相比,英伟达 GPU 提供的 FP16 将算术吞吐量提高了 8 倍,大幅加快了数学受限层的训练速度。

  此外,PyTorch 团队还着重强调,计算全部是依赖 OpenAI 的 Triton 语言执行的。

  Triton 是一种用于编写高效自定义深度学习基元的语言和编译器。

  Triton 的开发者致力于建立一个开源环境,以比 CUDA 更高效地编写代码,同时也期望它比现有的特定领域语言(domain-specific language)更具灵活性。

  论文:https://www.eecs.harvard.edu/~htk/publication/2019-mapl-tillet-kung-cox.pdf

  仓库:https://github.com/triton-lang/triton

  团队发现,在英伟达 H100 上使用 Triton 内核训练模型,性能可达 CUDA 内核的 76%~78%,在 A100 上也能达到 62%~82%。

  既然相比 CUDA 有一定的性能损失,那为什么要全部使用 Triton 语言?

  PyTorch 团队称,Triton 实现了 LLM 在 GPU 上的「可移植性」,能跨越多个不同个品牌的硬件,如英伟达、AMD、英特尔等。

  此外,它还在 Python 中为 GPU 编程提供了更高的「抽象层」,使开发者有机会编写自定义的具备更高性能的内核。

  最终,通过在 H100 和 A100 上使用 Llama3-8B 和 Granite-8B 的 Triton 和 CUDA 变体,并进行推理阶段的基准测试,PyTorch 团队证实了,Triton 内核能实现 CUDA-Free 的计算,且生成 token 的吞吐量有显著提升。

  内核架构

  以 Llama3 为例,经典的 Transformer 块由一般由以下部分组成:

  其中涉及的核心操作包括:

  - RMS 归一化

  - 矩阵乘法:融合 QKV 矩阵

  - 旋转位置编码(RoPE)

  - Flash Attention

  - 矩阵乘法:投影为为输出矩阵

  - RMS 归一化

  - 矩阵乘法:融合门控+向上投影

  - 激活函数 SiLU

  - 逐元素(element-wise)矩阵乘法

  - 矩阵乘法:向下投影

  这些操作中都需要一个或多个 GPU 内核进行计算,虽然不同的 Transformer 模型的执行细节可能有所不同,但核心操作是类似的。

  例如,与 Llama 3 不同,IBM 的 Granite 8B Code 模型在 MLP 层中使用了 bias,此类更改确实需要对内核的修改。

  将这些 Transformer 块堆叠在一起,再连接编码层,就组成了一个经典的 Transformer 模型。

  模型推理

  这些架构代码都会包含在 model.py 文件中,在 PyTorch 的 eager 执行模式下,C会启动 CUDA 内核执行这些代码。

  为了让 Llama3-8B 和 Granite-8B 模型 100% 用 Triton 语言实现端到端推理,我们需要手写 Triton 内核(kernel),或利用 torch.compile 模块自动生成。

  对于较小的操作,比如 RMS 归一化、RoPE、SiLU 函数和 element-wise 矩阵乘法,torch.compile 可以自动生成 Triton 内核。

  使用 Nsight 等工具即可对这些内核进行观察,如下图所示,自动生成的内核显示为 QKV 乘法和 flash attention 之前的深绿色方块:

  使用 torch.compile 跟踪 Llama3-8B,显示 CUDA 内核

  通过 Nsight 的跟踪信息可以观察到,在 Llama3-8B 中,占端到端延迟 80% 的两个主要操作是矩阵乘法和注意力内核,而且它们依旧由 CUDA 内核操作。

  为了进一步提升性能,我们开始手写 Triton 内核来替换上述两个操作。

  手写 Triton 内核

  矩阵乘法

  对于线性层中的矩阵乘法,编写一个自定义的 FP16 Triton GEMM (General Matrix-Matrix Multiply)内核,执行通用的矩阵-矩阵乘法,其中利用了 SplitK 进行工作分解。

  为了实现最佳性能,还使用了穷举搜索来调整 SplitK GEMM 内核。

  因为每个线性层的权重矩阵都有不同的形状,如果要获得最佳性能,就需要针对每种矩阵形状调整 Triton 内核。

  Granite-8B 和 Llama3-8B 的线性层权重矩阵规格如下:

  调整每个线性层后,相比未调整的 Triton 内核,可以实现 1.2 倍的端到端加速。

  Flash Attention

  Triton 的 flash attention 内核有一系列不同的配置和实现,包括:

  - AMD Flash

  - OpenAI Flash

  - Dao AI Lab Flash

  - XFormers Flash

  - PyTorch FlexAttention

  首先,采用 eager 模式,之后用 torch.compile 的标准方法进行编译,并对文本生成质量进行评估;

  上表总结了第2~5 个内核「开箱即用」时的表现。

  这些结果表明,如果目标是构建一个端到端的生产级内核,那么拥有一个能跑基准测试的内核还远远不够。

  后续测试中使用 AMD flash attention 内核,因为它可以通过 torch.compile 进行编译,且在 eager 和 compile 模式下都有清晰的输出。

  为了满足 torch.compile 与 AMD flash attention 内核的兼容性,我们需要自定义 torch 运算符,主要包括以下两步:

  1. 将函数包装到 PyTorch 自定义运算符中

  2. 在运算符中添加一个 FakeTensor Kernel,给定 flash 输入张量的形状(q、k 和 v),它可以提供一种计算 flash 内核输出形状的方法

  将模型中的运算换为 Triton 的自定义内核后,就能成功地进行编译和运行,Nsight 跟踪信息如下图所示:

  对比图 5 可以发现,图 6 就是 100% 使用 Triton 内核的前向计算。

  基准测试

  基准测试中使用 Granite-8B 和 Llama3-8B 模型,在英伟达 H100 和 A100 上进行单 GPU 运行,并定义了两种不同的配置:

  Triton 内核配置使用:

  1. Triton SplitK GEMM

  2. AMD Triton Flash Attention

  CUDA 内核配置使用:

  1. cuBLAS GEMM

  2. cuDNN Flash Attention - 缩放点积注意力 (SDPA)

  在典型的推理设置下,eager 和 torch 编译模式的吞吐量和 token 间延迟如下:

  批大小=2,输入序列长度=512,输出序列长度=25

  Triton 模型在 H100 上的性能最高可达 CUDA 模型的 78%,在 A100 上的性能最高可达 82%。两者间性能的差距可能源于矩阵乘法和 flash attention 的内核延迟,下一节将详细讨论。

  微基准测试

  解码延迟时间对比,输入是任意提示,批大小=1,提示长度=44

  将端到端推理中的各部分进行单独对比,我们注意到以下两点:

  1. Triton 的 matmul 内核比 CUDA 慢 1.2~1.4 倍

  2. AMD 的 Triton Flash Attention 内核比 CUDA SDPA 慢 1.6 倍

  这些结果表明,需要进一步提升 GEMM 和 Flash Attention 等关键原语的内核性能。

  比如最近提出的 FlashAttention-3、FlexAttention 等工作提供了更好的方法来利用底层硬件,有希望在此基础上为 Triton 进一步加速。

  将 FlexAttention 与 SDPA 和 AMD 的 Triton Flash 内核进行比较,微基准测试结果显示,Flex 有望被用于上下文更长、解码规模更大的问题场景。

  英伟达 H100 SXM5 80GB 上的 FlexAttention 内核基准测试

  未来展望

  接下来,我们期望进一步优化矩阵乘法(matmuls),以更充分地利用硬件。

  比如使用不同的工作分解方法(类似 StreamK 的持久内核技术),以加快基于 Triton 的方法。

  我们还期望继续探索 FlexAttention 和 FlashAttention-3,进一步缩小 Triton 和 CUDA 间的差距。

  以上的实验只针对 FP16 精度,但早前的研究表明,与 cuBLAS FP8 GEMM 相比,FP8 Triton GEMM 内核表现更好。因此接下来的工作还会探讨端到端 FP8 LLM 推理。

  参考资料:

  CUDA-Free Inference for LLMs | PyTorch

来自: 网易科技

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

www3300300

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值