自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(73)
  • 收藏
  • 关注

原创 # 使用 Selenium 爬取苏宁易购优质评价

随着电子商务的蓬勃发展,用户评价成为消费者决策的重要参考。爬取电商平台上的用户评价,不仅可以帮助我们了解消费者的真实反馈,还能为数据分析和市场研究提供丰富的素材。苏宁易购作为国内知名的电商平台,拥有海量的商品和用户评价数据。本文的目标是爬取苏宁易购上某款手机的优质评价,并将其保存到本地文件中,以便后续分析。本文通过一个简单的案例,展示了如何使用 Selenium 爬取苏宁易购上的优质评价,并将这些评价保存到本地文件中。

2025-05-28 11:34:40 1241

原创 # 云端大模型:智能时代的新引擎

摘要: 云端大模型正成为人工智能发展的核心驱动力,为各行业提供强大的智能服务。讯飞星火认知大模型支持语音识别、自然语言处理等功能,用户可根据需求选择不同版本(如Spark X1、Spark Pro)进行开发体验。开发平台ModelScope提供便捷的模型训练环境,通过API调用可实现高效任务处理。示例代码展示了星火大模型的实际应用,体现其在提升工作效率方面的价值。云端大模型通过灵活的计算能力和丰富的功能,正重塑人工智能的应用生态。

2025-05-27 10:28:38 671

原创 # 使用 Hugging Face Transformers 和 PyTorch 实现信息抽取

本文介绍了使用Hugging Face Transformers和PyTorch实现基于大语言模型的信息抽取方法。文章详细讲解了从商品描述文本中提取产品名称、品牌、特点、价格和销量等结构化信息的技术方案。通过定义提示模板、准备示例数据,并利用Qwen2.5-1.5B-Instruct模型的生成能力,实现了高效的信息抽取功能。该方法避免了传统机器学习方法需要大量标注数据的缺点,能够处理复杂文本结构。文中还提供了完整的代码实现和测试样例,展示了该方法在实际应用中的效果。

2025-05-25 20:12:21 1045

原创 # 探索自然语言处理的奥秘:基于 Qwen 模型的文本分类与对话系统实现

本文介绍了如何利用Qwen模型实现文本分类和多轮对话系统。Qwen是一款先进的NLP模型,具备强大的语言理解和生成能力。文章通过Python代码示例展示了三个核心应用:1)文本情感分类器,通过提示模板实现情感判断;2)多轮对话系统,基于历史对话生成连贯回复;3)结合文本分类的对话系统,可应用于智能客服等场景。这些案例展示了Qwen模型在实际应用中的潜力,为开发者提供了构建智能语言处理系统的技术参考。

2025-05-25 19:48:57 1167

原创 # 大模型的本地部署与应用:从入门到实战

检索增强生成(Retrieval-Augmented Generation, RAG)是一种为大模型提供外部知识源的技术,使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。RAG 将生成模型与检索器模块相结合,提供来自外部知识源的附加信息,这些信息可以方便地进行更新和维护。RAG 对于 LLM 来说就像学生的开卷考试一样,测试的重点是模型的推理能力,而不是它记忆特定信息的能力。容器:轻量级、可执行的独立软件包,包含应用运行所需的一切要素。镜像:只读模板,包含运行某个软件所需的所有内容。仓库。

2025-05-23 17:02:27 1347

原创 # 深入解析BERT自然语言处理框架:原理、结构与应用

BERT(Bidirectional Encoder Representations from Transformers)是自然语言处理(NLP)领域的重要框架,基于Transformer的双向编码器模型,通过预训练学习丰富的语言表示,适用于多种NLP任务。其核心优势在于双向性,能同时考虑文本的上下文信息,捕捉更丰富的语义特征。BERT的模型结构基于Transformer的编码器,采用多层自注意力机制和前馈神经网络。预训练任务包括遮蔽语言模型(MLM)和下一句预测(NSP),通过微调适应下游任务。BERT在

2025-05-22 21:06:44 955

原创 # YOLOv5分布式训练与混合精度训练实战指南

本文详细介绍了如何利用YOLOv5进行分布式训练和混合精度训练,以加速深度学习模型的训练过程。YOLOv5作为一种高效的单阶段目标检测算法,通过分布式训练(使用PyTorch的DistributedDataParallel)和混合精度训练(使用NVIDIA Apex的amp模块),能够显著提升训练速度和模型性能。文章涵盖了环境配置、代码实现、数据加载与预处理、损失函数与优化器、学习率调度器以及训练循环等关键步骤,并展示了在COCO数据集上的实验结果,证明了这些技术在提升训练效率和模型精度方面的有效性。未来,

2025-05-21 09:22:12 1171

原创 # YOLOv5:目标检测的新里程碑

YOLOv5是YOLO系列目标检测算法的最新版本,以其高效性和高精度在计算机视觉领域取得了显著进展。该算法采用单阶段检测设计,直接在输入图像上进行预测,无需生成候选区域,从而实现了快速处理图像和实时输出检测结果。YOLOv5的核心技术包括基于CSPDarknet53的网络架构、多种损失函数(如GIoU损失)、数据增强技术以及混合精度训练,这些技术共同提升了模型的检测精度和训练效率。YOLOv5适用于多种实际应用场景,如安防监控、自动驾驶、工业检测和医疗影像分析。其简洁的代码实现和丰富的文档支持使得研究人员和

2025-05-20 15:38:05 1162

原创 # YOLOv4:目标检测的全新突破

YOLOv4 是目标检测领域的一个重要里程碑。它通过引入多种先进的技术和改进方法,如马赛克数据增强、DropBlock 正则化、CIoU 损失函数、SPP-Net、CSP-Net 和 PANet 等,在检测精度和速度上都取得了显著的提升。YOLOv4 的出现为实时目标检测和各种应用场景提供了更强大的技术支持,也为未来目标检测技术的发展提供了新的方向。

2025-05-19 16:03:06 1064

原创 # 基于Python的多摄像头监控与OCR识别系统

本文介绍了一个基于Python的多摄像头监控与OCR识别系统,旨在实时监控多个摄像头的视频流,并通过OCR技术识别图像中的文本信息,进而触发警报。系统支持多摄像头监控,使用PaddleOCR进行文本识别,并通过串口通信控制外部警报设备。图形用户界面(GUI)由PyQt5构建,方便用户实时查看视频流和OCR结果,并手动控制警报。技术栈包括Python、OpenCV、PaddleOCR、PyQt5和Serial。系统通过定期释放摄像头资源、OCR识别、警报控制和GUI管理等功能模块实现,适用于工业生产和安防监控

2025-05-15 17:26:48 918

原创 # YOLOv3 模型训练代码解析与实践

本文详细解析了YOLOv3模型训练代码的实现过程,涵盖了数据加载与预处理、模型初始化、训练过程、模型评估与保存等关键步骤。代码使用PyTorch框架,通过数据增强、多尺度训练等技术提升模型性能。训练过程中使用Adam优化器,并定期评估模型以监控其表现。文章还提供了实践经验和技巧,包括数据准备、超参数调整、模型优化和硬件加速等,帮助读者更好地理解和应用YOLOv3模型。通过这些步骤和技巧,可以有效提升目标检测模型的训练效率和检测精度。

2025-05-14 16:07:06 877

原创 # YOLOv3:基于 PyTorch 的目标检测模型实现

本文介绍了如何使用 PyTorch 实现 YOLOv3 目标检测模型。YOLOv3 是一种高效的单阶段目标检测算法,能够在输入图像上直接预测边界框和类别概率,适用于实时检测任务。文章首先简要介绍了 YOLOv3 的特点,包括单阶段检测、多尺度检测和高效率。接着,详细说明了实现 YOLOv3 所需的环境准备和代码实现步骤,包括导入必要的库、构建模块列表、实现上采样层和空层等。通过本文,读者可以了解如何从零开始构建 YOLOv3 模型,并掌握其核心实现细节。

2025-05-13 19:13:45 871 1

原创 # 实时英文 OCR 文字识别:从摄像头到 PyQt5 界面的实现

本文介绍了如何使用 Python 和 PaddleOCR 实现从摄像头实时捕获视频流并进行英文文字识别,最终将结果显示在 PyQt5 界面中。技术栈包括 PaddleOCR(用于文字识别)、OpenCV(用于视频流处理)和 PyQt5(用于创建图形用户界面)。实现步骤包括创建 PyQt5 界面、初始化 PaddleOCR、捕获摄像头视频流、进行 OCR 识别并将结果实时显示在界面中。通过该方案,用户可以方便地实现实时英文 OCR 文字识别功能。

2025-05-12 20:46:15 997

原创 # YOLOv3:深度学习中的目标检测利器

在计算机视觉领域,目标检测是一项核心任务,它涉及到识别图像或视频中的物体,并确定它们的位置。随着深度学习技术的快速发展,目标检测算法也在不断进步。YOLO(You Only Look Once)系列算法以其速度快、易于实现而受到广泛关注。本文将深入探讨YOLOv3,这是YOLO系列中的一个重要版本,它在准确性和速度之间取得了很好的平衡。

2025-05-10 18:50:57 1562

原创 # YOLOv2:目标检测的升级之作

YOLOv2 作为 YOLO 系列的一个重要版本,通过一系列的改进,在目标检测的精度和速度方面都取得了显著的进步。它不仅继承了 YOLOv1 的高效性,还解决了 YOLOv1 存在的一些问题,如定位精度不高、对小目标检测效果不佳等。YOLOv2 的出现为实时目标检测任务提供了一个更加可靠的解决方案,推动了目标检测技术的发展。然而,目标检测领域仍然面临着许多挑战,如如何进一步提高对复杂场景中目标的检测精度、如何更好地处理遮挡和光照变化等问题。

2025-05-09 21:10:56 1284

原创 # 如何使用OpenCV进行发票的透视变换和二值化处理

在自动化处理发票和其他文档时,图像预处理是一个关键步骤,它可以帮助提高OCR(光学字符识别)的准确性。透视变换用于校正图像中的透视失真,而二值化处理则可以简化图像,使其更适合OCR处理。本文将介绍如何使用OpenCV库进行这些操作。

2025-05-08 21:24:33 719

原创 # 如何使用 PyQt5 创建一个简单的警报器控制界面

在现代自动化和监控系统中,警报器扮演着至关重要的角色。它们可以提醒我们注意潜在的危险或紧急情况。在这篇文章中,我将向您展示如何使用Python的PyQt5库创建一个简单的警报器控制界面。这个界面将允许用户通过点击按钮来控制警报器的不同功能,如开启声音、闪光等。

2025-05-08 19:55:50 695

原创 # 创建一个功能完备的计算器应用:使用PyQt5和Python

在数字时代,计算器是日常生活中不可或缺的工具之一。从学生到专业人士,几乎每个人都会用到计算器。虽然有许多现成的计算器应用程序,但创建一个定制的计算器应用可以提供独特的价值,并帮助我们更好地理解软件开发的全过程。在本文中,我们将介绍如何使用Python编程语言和PyQt5库来创建一个功能完备的计算器桌面应用。

2025-05-07 19:46:42 972

原创 # 构建机器学习模型的桌面应用程序:从训练到部署

在数据分析和机器学习领域,模型的构建和预测是核心任务之一。然而,将这些模型转化为用户友好的应用程序,可以极大地提高模型的实用性和可访问性。本文将介绍如何使用Python的PyQt5库构建一个简单的图形用户界面(GUI)应用程序,该程序可以加载一个预训练的模型,并允许用户输入数据以获取预测结果。

2025-05-07 19:35:31 581

原创 # YOLOv1:开启实时目标检测的新时代

YOLOv1 以其高效的实时目标检测能力在计算机视觉领域引起了广泛关注。它通过将目标检测问题转化为一个单一的回归问题,实现了端到端的训练,大大提高了检测速度和模型的泛化能力。然而,YOLOv1 也存在一些局限性,如定位精度低、召回率低和对相似物体的区分能力弱等。尽管如此,YOLOv1 仍然为后续的目标检测算法提供了重要的参考和借鉴,推动了目标检测技术的不断发展和进步。总之,YOLOv1 作为目标检测领域的一个重要里程碑,为我们提供了宝贵的经验和启示。

2025-05-06 20:18:10 1183

原创 # 从零构建一个简单的卷积神经网络:手写数字识别

CNN的核心在于卷积层和池化层。在我们的模型中,我们定义了两个卷积层和两个池化层,以及两个全连接层。这个结构是CNN的典型设计,适用于处理图像数据。return x在forward方法中,我们定义了数据通过网络的路径。首先,数据通过两个卷积层和池化层,然后被展平并传递到两个全连接层。最终,模型输出每个类别的概率。通过这个简单的例子,我们展示了如何从零开始构建一个CNN模型,包括数据准备、模型定义、训练和测试的完整过程。虽然我们使用的是随机生成的数据,但这个过程同样适用于真实世界的数据集。

2025-05-05 20:02:27 781

原创 # 部署深度学习模型:Flask API 服务端与客户端通信实战

通过这篇文章,我们展示了如何使用 Flask 部署一个深度学习模型,并通过客户端与服务端进行通信。我们详细解释了服务端和客户端的代码,并提供了运行和测试的步骤。希望这能帮助你理解如何将深度学习模型部署为 Web 服务,并处理可能遇到的网络问题。

2025-05-05 19:45:26 1175

原创 # 基于SIFT的图像相似性检测与拼接:Python实现与解析

尺度空间极值检测:通过高斯模糊和差分操作检测图像中的关键点。关键点定位:精确定位关键点的位置和尺度。方向确定:为每个关键点分配一个方向,使其具有旋转不变性。关键点描述:生成关键点的描述符,用于后续的匹配。本文通过Python和OpenCV库实现了基于SIFT算法的图像相似性检测和图像拼接功能。SIFT算法能够有效地提取图像中的特征点,为图像匹配和拼接提供了坚实的基础。通过本文的代码示例和解析,读者可以快速理解和应用这些技术,解决实际问题。

2025-05-04 11:16:51 1262

原创 # 基于词袋模型(BoW)的猫狗图像分类实践

self.class_names = ['cat', 'dog'] # 确保与文件夹名称一致:词袋模型中视觉单词的数量。kmeans:用于将 SIFT 特征聚类为视觉单词。svm:用于分类的 SVM 模型。sift:用于提取图像的 SIFT 特征。scaler:用于对特征进行标准化处理。:类别名称,这里以猫和狗为例。本文介绍了基于词袋模型(BoW)和支持向量机(SVM)的猫狗图像分类方法,并提供了详细的代码实现。通过特征提取、聚类和分类的过程,实现了对猫狗图像的自动分类。

2025-05-03 19:07:24 1372

原创 # 交通标志识别:使用卷积神经网络的完整实现

self.fc2 = nn.Linear(128, 7) # 输出层对应7个类别x = x.view(-1, 64 * 8 * 8) # 展平return x通过上述步骤,我们成功实现了一个基于卷积神经网络的交通标志识别系统。这个系统可以自动从图像中识别出交通标志的类别,为自动驾驶和交通管理等应用提供了技术支持。当然,这只是一个简单的实现,实际应用中还需要进一步优化模型结构、调整超参数,并进行更全面的测试和评估,以提高系统的准确性和可靠性。

2025-05-01 12:25:26 1068

原创 # 基于 Python 和 jieba 的中文文本自动摘要工具

这个工具的核心是基于TF-IDF算法,利用 Python 的jieba库实现中文文本的自动摘要。根据句子权重,工具按权重降序排序并选择权重最高的若干句子作为摘要。默认情况下,工具会提取权重最高的 3 个句子,但你可以根据需要调整这个数字。此外,工具还会对摘要句子进行去重,确保摘要中没有重复的句子。这个基于 Python 和 jieba 的中文文本自动摘要工具简单易用,能够快速从长文本中提取关键信息。它适用于多种文本处理场景,如新闻摘要、文献综述等。希望这个工具能够帮助你更高效地处理文本数据。

2025-04-30 17:08:39 873

原创 # 实现中文情感分析:基于TextRNN的模型部署与应用

分词器是将输入文本转换为词汇索引的关键工具。在这个项目中,我们使用简单的字符级分词器,将每个字符作为独立的词汇单元。UNK:未知词汇的标记。PAD:填充标记,用于将文本填充到固定长度。tokenizer:分词器函数,将输入文本逐字符分割。接下来,我们定义TextRNN模型,并加载预训练的权重。class_list = ['喜悦', '愤怒', '厌恶', '低落']Model:TextRNN模型类,传入预训练词嵌入、词汇表大小、词嵌入维度和类别数量。:加载预训练模型的权重。

2025-04-30 11:24:08 1176

原创 # 深入探索中文情感分析:基于TextRNN的实战之旅

通过以上步骤,我们成功构建了一个基于TextRNN的中文情感分析模型。项目中涉及的关键技术包括数据预处理、预训练词嵌入的使用、模型构建与训练、以及性能评估。TextRNN作为一种经典的循环神经网络架构,能够有效地捕捉文本中的序列信息,为情感分析任务提供了强大的支持。然而,情感分析是一个复杂且不断发展的领域。探索更先进的模型架构:例如Transformer、BERT等,这些模型在处理长文本和复杂语义关系方面具有显著优势。数据增强。

2025-04-29 15:20:31 1446

原创 # 构建词汇表:自然语言处理中的关键步骤

构建词汇表是 NLP 中的一个重要步骤。通过统计字符频率、过滤低频字符并映射为索引值,我们可以高效地处理文本数据。本文通过一个具体的例子展示了如何使用 Python 构建词汇表,并保存为.pkl文件以便后续使用。希望这篇文章对你有所帮助!

2025-04-25 20:01:35 831

原创 # 深入理解循环神经网络(RNN)及其变体LSTM

RNN和LSTM在处理序列数据时具有独特的优势,但它们也存在一些局限性。RNN在处理长序列数据时容易遇到梯度消失的问题,而LSTM通过引入门控机制有效地解决了这一问题。在实际应用中,我们可以根据具体需求选择合适的模型,并对其进行优化和调整,以获得更好的性能。

2025-04-24 20:11:31 571

原创 # 深度学习中的学习率调度:以 PyTorch 图像分类为例

在深度学习中,动态调整学习率是一种非常有效的策略,可以帮助模型更快地收敛并提高最终性能。通过使用 PyTorch 提供的学习率调度器,我们可以根据训练过程中的需求灵活调整学习率。在我们的图像分类项目中,StepLR调度器显著提高了模型的训练效率和最终性能。当然,不同的学习率调度器适用于不同的场景,选择合适的学习率调度器需要根据具体任务和模型的表现来决定。希望本文的介绍能够帮助你在自己的深度学习项目中更好地应用学习率调整策略。!

2025-04-23 20:27:14 1048

原创 # 构建和训练一个简单的CBOW词嵌入模型

CBOW模型是一种预测给定上下文中目标词的模型。它通过学习上下文词的向量表示来预测目标词。这种方法在处理大量文本数据时非常有效,因为它可以捕捉词汇之间的语义和语法关系。接下来,我们定义CBOW模型。这个模型包括嵌入层、投影层和输出层。# 定义CBOW模型类self.embeddings = nn.Embedding(vocab_size, embedding_dim) # 定义嵌入层self.proj = nn.Linear(embedding_dim, 128) # 定义投影层。

2025-04-23 20:25:44 723

原创 # 利用迁移学习优化食物分类模型:基于ResNet18的实践

本项目的目标是构建一个能够准确分类食物图像的模型。我们选择了ResNet18作为基础模型,因为它在多个图像分类任务上都表现出色。通过迁移学习,我们可以利用ResNet18在ImageNet数据集上预训练的权重,加速模型的收敛并提高分类准确率。通过本项目,我们成功地将ResNet18模型迁移到了食物分类任务中,并通过迁移学习显著提高了模型的性能。这种方法不仅减少了训练时间,还提高了模型的泛化能力。未来,我们可以尝试更多的迁移学习策略,如使用不同的预训练模型或调整迁移学习的比例,以进一步提升模型性能。

2025-04-22 20:16:30 805

原创 # 基于PyTorch的食品图像分类系统:从训练到部署全流程指南

支持20种不同食品的分类使用数据增强提高模型泛化能力实现了完整的训练-验证-测试流程提供模型保存与加载功能我们创建了class food_dataset(Dataset): # food_dataset是自己创建的类名称,继承Dataset类def __init__(self, file_path, transform=None): # 类的初始化,解析数据文件txt,file_path表示文件路径,transform可选的图像转换操作。

2025-04-22 18:50:55 728

原创 # 使用 PyTorch 构建并训练一个简单的 CNN 模型进行图像分类

在深度学习领域,卷积神经网络(CNN)是处理图像分类任务的强大工具。本文将通过一个简单的示例,展示如何使用 PyTorch 构建、训练和测试一个 CNN 模型,用于对食品图像进行分类。

2025-04-18 21:09:32 1043

原创 《卷积神经网络(CNN):深度学习中的图像识别利器》

通过这个简单的例子,我们实现了基于 PyTorch 的手写数字识别模型。我们学习了如何加载数据、构建模型、训练和测试模型。虽然这个模型比较简单,但它为我们深入学习深度学习和 PyTorch 提供了一个很好的起点。

2025-04-17 16:13:50 1310

原创 # 手写数字识别:使用PyTorch构建MNIST分类器

接下来,我们定义一个简单的神经网络模型,包含两个隐藏层和一个输出层。'''定义神经网络类的继承这种方式'''class NeuralNetwork(nn.Module): #通过调用类的形式来使用神经网络,神经网络的模型,nn.moduledef __init__(self): #python基础关于类,self类自已本身super().__init__() #继承的父类初始化self.flatten = nn.Flatten() #展开,创建一个展开对象flatten。

2025-04-16 16:34:02 778

原创 # 基于OpenCV与Dlib的人脸融合技术实现

仿射变换是一种二维坐标到二维坐标的线性变换,它保持了图像的直线性和平行性。通过仿射变换,可以对图像进行平移、旋转、缩放和倾斜等操作。在计算机视觉中,仿射变换常用于图像校正、目标匹配等场景。人脸融合是一种将两张人脸图像的特征进行融合的技术,生成一张新的图像,同时保留两张人脸的主要特征。这种技术在娱乐、影视特效等领域有着广泛的应用。实现人脸融合的关键在于精确地检测人脸的关键点,并进行合理的图像变换和融合。通过本文的介绍,我们从简单的仿射变换逐步深入到复杂的人脸融合技术。

2025-04-10 10:29:44 1297

原创 # 实时人脸性别与年龄识别:基于OpenCV与深度学习模型的实现

通过本项目的实现,我们成功搭建了一个基于OpenCV与深度学习模型的实时人脸性别与年龄识别系统。在项目过程中,我们详细介绍了人脸检测、性别与年龄识别以及结果展示等关键模块的实现原理与代码实现,并探讨了项目优化与改进的方向。希望本文能够为对计算机视觉与深度学习感兴趣的读者提供一定的参考与启发,大家可以在实际项目中根据具体需求对代码进行修改与拓展,探索更多有趣的应用场景。未来,随着技术的不断发展,相信人脸分析技术将在更多领域发挥更大的作用,为我们的生活带来更多便利与创新。

2025-04-10 10:15:53 1139

原创 # 决策树与PCA降维在电信客户流失预测中的应用

通过本文的实验,我们可以看到决策树模型在电信客户流失预测中的应用效果,以及PCA降维对模型性能的影响。在实际应用中,我们可以根据具体的数据和需求,选择合适的模型和降维方法,以达到最佳的预测效果。同时,可视化工具如混淆矩阵的可视化图和决策树的可视化图,也可以帮助我们更好地理解和评估模型的性能。

2025-04-08 20:26:42 1222

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除