题目描述 Description
小胖和ZYR要去ESQMS森林采蘑菇。
ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇。小胖和ZYR经过某条小径一次,可以采走这条路上所有的蘑菇。由于ESQMS森林是一片神奇的沃土,所以一条路上的蘑菇被采过后,又会长出一些新的蘑菇,数量为原来蘑菇的数量乘上这条路的“恢复系数”,再下取整。
比如,一条路上有4个蘑菇,这条路的“恢复系数”为0.7,则第一~四次经过这条路径所能采到的蘑菇数量分别为4,2,1,0.
现在,小胖和ZYR从S号小树丛出发,求他们最多能采到多少蘑菇。
对于30%的数据,N<=7,M<=15
另有30%的数据,满足所有“恢复系数”为0
对于100%的数据,N<=80,000,M<=200,000,0.1<=恢复系数<=0.8且仅有一位小数,1<=S<=N.
输入输出格式 Input/output
输入格式:
第一行,N和M
第2……M+1行,每行4个数字,分别表示一条小路的起点,终点,初始蘑菇数,恢复系数。
第M+2行,一个数字S
输出格式:
一个数字,表示最多能采到多少蘑菇,在int32范围内。
输入样例:
3 3
1 2 4 0.5
1 3 7 0.1
2 3 4 0.6
1
输出样例:
8
今天的最后一道强连通题……
不知道什么原因脑子一直抽风,在一些很无聊的地方犯傻…………
题目蛮明确的,对于每条路来说,多经过几次就有可能有更高的收益,但因为是单向边,如果某条路经过多次的话,那么就必定是有环了,优先把这个环上的点都走一遍得到的答案一定更优一些,所以对于每个环,把它处理一遍之后缩成一个点,其权值为在上面把该环上的点全跑成0得到的最大值
想法蛮简单,实现起来蛮恶心的…………
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<stack>
#define FUCKCY 12
using namespace std;
const int maxn=2333333;
struct doubi{
int f,t,d;
double u;
}edge[maxn];
int next[maxn],first[maxn],tot;
void build(int f,int t,int d,double u)
{
edge[++tot].f=f;
edge[tot].t=t;
edge[tot].d=d;
edge[tot].u=u;
next[tot]=first[f];
first[f]=tot;
}
int pre[maxn];
stack<int> q;
int cnt;
int scc_num[maxn];
int scc_cnt;
int n,m;
int vlaue[maxn];
int fa[maxn];
int tarjan(int u)
{
int lowu=pre[u]=++cnt;
q.push(u);
for(int i=first[u];i;i=next[i]){
int v=edge[i].t;
if(!pre[v]){
int lowv=tarjan(v);
lowu=min(lowu,lowv);
}
else if(!scc_num[v]){
lowu=min(lowu,pre[v]);
}
}
if(lowu==pre[u]){
scc_cnt++;
fa[scc_cnt]=u;
while(FUCKCY){
int v=q.top();
q.pop();
scc_num[v]=scc_cnt;
if(u==v){
break;
}
}
}
return lowu;//忘打了,死在这里了……QAQ
}
queue<int> w;
bool vis[maxn];
int getv(doubi a)
{
int temp=0;
int temp1=a.d;
double temp2=a.u;
while(temp1){
temp+=temp1;
temp1*=temp2;
}
return temp;
}
void bfs(int u,int cnt)
{
for(int i=first[u];i;i=next[i]){
int v=edge[i].t;
if(scc_num[v]==cnt){
vlaue[cnt]+=getv(edge[i]);
if(!vis[v]){
vis[v]=1;
bfs(v,cnt);
}
}
}
}
void getvlaue()
{
for(int i=1;i<=scc_cnt;i++){//其实这里直接枚举点就好,没必要记录这个数组的
vis[fa[i]]=1;
bfs(fa[i],i);
}
}
struct faq{
int f,t,d;
}newedge[maxn];
int newnext[maxn],newfirst[maxn],newtot;
void build_new(int f,int t,int d)
{
newedge[++newtot].f=f;
newedge[newtot].t=t;
newedge[newtot].d=d;
newnext[newtot]=newfirst[f];
newfirst[f]=newtot;
}
int s;
long long dist[maxn];
bool use[maxn];
void spfa()
{
for(int i=1;i<=scc_cnt;i++){
dist[i]=-2147483647777ll;
}
dist[scc_num[s]]=vlaue[scc_num[s]];//不要忘了把处理出来的scc的权值加上……
use[scc_num[s]]=1;
w.push(scc_num[s]);
while(!w.empty()){
int u=w.front();
w.pop();
use[u]=0;
for(int i=newfirst[u];i;i=newnext[i]){
int v=newedge[i].t;
if(dist[v]<dist[u]+newedge[i].d+vlaue[v]){
dist[v]=dist[u]+newedge[i].d+vlaue[v];
if(!use[v]){
use[v]=1;
w.push(v);
}
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++){
int a,b,c;
double x;
scanf("%d%d%d%lf",&a,&b,&c,&x);//把那个系数直接存到边里
build(a,b,c,x);
}
for(int i=1;i<=n;i++){
if(!pre[i]){
tarjan(i);//求scc
}
}
getvlaue();//处理每个scc的权值
for(int i=1;i<=m;i++){
int f=edge[i].f,t=edge[i].t;
if(scc_num[f]!=scc_num[t]){
build_new(scc_num[f],scc_num[t],edge[i].d);//缩点
}
}
cin>>s;
spfa();//最长路
int ans=0;
for(int i=1;i<=scc_cnt;i++){
ans=max((long long)ans,dist[i]);
}
cout<<ans<<endl;
return 0;
}