习题6-5 使用函数验证哥德巴赫猜想 (20分)

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

89 100

输出样例:

89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97, 

我的代码:

int prime( int p ){
	int i;
	if(p<=1) return 0;
	for(i=2;i<=sqrt(p);i++){
		if(p%i==0){
			return 0;
		}
	}
	return 1;
}
void Goldbach( int n ){
	int i,j;
	for(i=2;i<=n/2;i++){
		if(prime(i)){
			for(j=i;j<n;j++){
				if(prime(j)){
					if(i+j==n){
						printf("%d=%d+%d",n,i,j);
						return;
					}
				}
			}
		}
	}
}

注意:测试点:n = m = 6,6=3+3.

### 回答1: 好的,下面是中文回复: 这道题要求我们实现一个判断素数的函数,并用它来验证哥德巴赫猜想。哥德巴赫猜想指出,任何一个不小于6的偶数都可以表示为两个奇素数之和。素数是指只能被1和自身整除的正整数,但1不是素数,2是素数。 ### 回答2: 判断素数的函数可以定义为:输入一个正整数n,返回一个布尔值,表示n是否为素数。该函数可以使用最基本的算法:对n进行遍历,判断是否能被2到n-1之间的任意整数整除。如果存在一个正整数m能够整除n,则n不是素数,否则n是素数。 利用该函数验证哥德巴赫猜想可以采用以下方法:对于任意一个大于等于6的偶数m,遍历所有小于等于m的奇素数,寻找是否存在两个奇素数p和q,使得p+q=m。如果存在这样的一组p和q,则m可以表示为两个奇素数之和,哥德巴赫猜想成立。否则,哥德巴赫猜想不成立。 需要注意的是,为了避免重复计算,可以在验证每个偶数m时,将已经判断过的奇素数存储下来,以便下一次验证时直接使用,可以提高效率。此外,在实现素数判定函数时,还可以采用更高效的算法,如埃氏筛法、厄拉多塞筛法等。 总之,素数及其解是数论中重要的研究对象,在实际应用中也有广泛的应用,如RSA加密算法、哈希函数等。实现一个简单的素数判定函数验证哥德巴赫猜想,是数学爱好者提高数学素养、拓展数学视野的一种好方法。 ### 回答3: 要实现一个判断素数的函数,我们可以使用一种较为简单的算法:试除法。即:假设要判断一个数n是否为素数,我们遍历从2到n-1之间所有正整数,别除以n,如果有除数,那么n就不是素数;否则n就是素数。 代码实现如下: ``` def is_prime(n): if n < 2: #小于2的数不是素数 return False for i in range(2, n): if n % i == 0: #n能被i整除,说明n不是素数 return False return True #n没有被除过,说明n是素数 ``` 有了判断素数的函数,我们就可以验证哥德巴赫猜想了。哥德巴赫猜想指出,任何一个不小于6的偶数n都可以表示为两个奇素数之和,即n=p+q,其中p、q为奇素数。 我们可以枚举所有符合条件的奇数p,然后检查n-p是否为素数,如果是素数,那么n就可以表示为p和n-p的和,即n=p+(n-p)。代码实现如下: ``` def is_goldbach(n): if n < 6 or n % 2 != 0: #不符合哥德巴赫猜想的数 return False for i in range(3, n//2+1, 2): #枚举奇数p if is_prime(i) and is_prime(n-i): #判断n-p是否为素数 return True return False ``` 我们可以测试一下这个函数,对于n=6, 8, 10, ..., 100,都能够正确地输出True,验证了哥德巴赫猜想的正确性。 总之,函数实现对于验证哥德巴赫猜想是非常关键的,通过编写一个判断素数的函数,我们可以快速实现哥德巴赫猜想的验证。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值