big number

 /*

 *http://baike.baidu.com/view/2019233.htm

 *lim(n→∞) √(2πn) * n^n * e^(-n) / n! = 1

 *也就是说当n很大的时候,n!与√(2πn) * n^n * e^(-n)的值十分接近

 *这就是Stirling公式.

 *log10(n!) = log10(2*PI*n)/2+n*log10(n/E);

 */

#include <iostream>

#include <cmath>

using namespace std;

 

int main()

{

    const double pi=3.14159265359;

    const double e=2.718281828459;

    int N =0;

    long long number1=0;

    double number =0;

    cin>>N;

    while(N--)

    {

        cin>>number1;

        number = log10(2*pi*number1)/2 + number1*log10(number1/e);

        number1=(long long )number+1;

        cout<<number1<<endl;

    }

    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值