46-dify案例分享-0 代码搭建 Text2SQL 智能查询!用 Dify + 知识库 + Agent 实现自然语言秒变 SQL

1.前言

Text2SQL(或称NL2SQL)是一种自然语言处理技术,旨在将自然语言(Natural Language)问题转化为关系型数据库中可执行的结构化查询语言(Structured Query Language,SQL),从而实现对数据库的查询和交互。这项技术的核心目标是通过自然语言描述,无需用户具备SQL语法知识,即可完成复杂的数据库查询任务

具体来说,Text2SQL的任务包括以下步骤:

  1. 输入分析:用户以自然语言形式输入问题,例如“查找平均工资高于整体平均工资的部门名称”。
  2. 语义解析:系统将输入的自然语言问题解析为数据库中的结构化查询语句。
  3. SQL生成:根据解析结果生成对应的SQL语句,如“SELECT department_name FROM departments WHERE average_salary > (SELECT AVG(salary) FROM employees)”。
  4. 执行与反馈:系统执行SQL查询并返回结果,同时可能对结果进行进一步的解释或分析。

Text2SQL的应用领域广泛,包括智能客服、数据分析、金融、医疗、教育等,能够显著提高用户与数据库交互的效率和便利性。此外,随着大型语言模型(LLMs)的发展,Text2SQL技术在处理复杂查询和多轮对话方面也取得了显著进展。

前期也给大家介绍过关于dify整合数据库实现图表生成的案例,同样也给大家实现过dify案例分享-基于database插件实现Text2sql的数据库查询图表工作流

有小伙伴和提出问题SQL 是写到大模型的提示词里面,如果想查询其他的语句,之前的工作流text2sql的方案就有问题。是的当时为了方便演示所以我们做了3个业务场景,并且把SQL 语句都已经提前写好了。当时的目的主要还是给大家提供演示方便,因为考虑到很多非技术人员对SQL 语句的编写是不熟悉的。此外目前的主流的text2sql方案也有不成熟的的。今天就带大家实现一个简单基于企业知识库的 AI Agent 的text2sql方案。当然这个方案也是属于比较简单的方案。话不多说下面带大家看一下效果。

工作流AI Agent演示效果

image-20250423165316892

​ 上图我们就通过简单的自然语言查询到student_scores 有多少条记录。

AI Agent 演示效果

image-20250423165540692

同样我们使用AI Agent 也实现了text2SQL 的效果。

那么上面的工作流和 AI Agent是如何实现的呢,下面说一下我们的具体实现思路。

2.工作流的制作

在工作流制作之前我们需要用到dify的知识库,之前我很少提到知识库,主要是dify知识库做的不太好。因为这个工作流用到知识库,所以我们顺便把这个知识点说一下。

知识库创建

在知识库创建之前我们需要向量模型,所以我们需要在系统模型设置里面填写一下 向量模型。

打开右上角设置-模型供应商

image-20250423170131896

我们在找一下右上角有一个系统模型设置。

image-20250423170211470

在弹开的模型设置里面,我把Embedding 模型、Rerank 模型 设置选一下。

image-20250423170324449

这里Embedding 模型 我们选择了火山引擎提供的 “doubao-embeding”,Rerank 模型 我们这里选择硅基提供的bge-reanker-v2-m3

上面配置好完成我们去知识库面板创建一个知识库

image-20250423171330082

我们点开“创建知识库”。进入文件上传页面

image-20250423171422780

我们需要上传一个创建表的SQL 语句,文件类型是txt

image-20250423171523110

上面txt文本内容如下:

-- 创建学生成绩表
CREATE TABLE `student_scores` (
  `id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键ID',
  `student_id` varchar(20) NOT NULL COMMENT '学号',
  `student_name` varchar(50) NOT NULL COMMENT '学生姓名',
  `class_name` varchar(50) NOT NULL COMMENT '班级名称',
  `subject` varchar(50) NOT NULL COMMENT '科目名称',
  `score` decimal(5,2) NOT NULL COMMENT '分数',
  `exam_date` date NOT NULL COMMENT '考试日期',
  `semester` varchar(20) NOT NULL COMMENT '学期',
  `grade` varchar(20) NOT NULL COMMENT '年级',
  `created_at` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `updated_at` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`),
  KEY `idx_student_id` (`student_id`),
  KEY `idx_exam_date` (`exam_date`),
  KEY `idx_subject` (`subject`),
  KEY `idx_class` (`class_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='学生成绩信息表';

我们需要把他上传。

image-20250423171659988

因为这个比较简单我们就用高质量的索引方式创建文本向量,创建完成后,我们完成创建表的SQL 语句知识库创建。

image-20250423171825327

工作流制作

我们回到dify 工作台 创建一个 chatflow工作流,前面文章都有提到如何创建chatflow,这里就不做详细展开。

开始

这个开始节点我们这里不需要用户输入提示词,所以这个节点什么都不需要设置。

image-20250423172202431

知识检索

image-20250423172353392

我们按照上面的步骤完成知识检索节点创建。

查询变量 输入sys.querystring

知识库这里我们点击添加上面配置好的知识库。

image-20250423172523476

添加完成后,我们就设置好知识库检索这个节点。

image-20250423172605019

Agent

接下来我们在工作流中添加一个叫做“Agent”工作流节点. (这个Agent是dify 1.0.0之后版本中出现的,之前0.XX系列版本是没有的)

image-20250423173113833

​ 这里我们需要2个工具1个是 agent策略工具 1个是 database 插件。 这2个都是可以在插件市场找到

agent策略工具

image-20250423173309122

database 插件

image-20250423173344754

关于database 插件 可以看我之前的文章dify案例分享-基于database插件实现Text2sql的数据库查询图表工作流

我们可以在https://marketplace.dify.ai/plugins/hjlarry/database?language=zh-Hans 市场上找到这个项目

image-20250409133631280

目前这个项目支持的数据库有mysql, postgresql, sqlite, sqlserver, oracle

mysql+pymysql://root:123456@localhost:3306/test
postgresql+psycopg2://postgres:123456@localhost:5432/test
sqlite:///test.db
mssql+pymssql://<username>:<password>@<freetds_name>/?charset=utf8
oracle+oracledb://user:pass@hostname:port[/dbname][?service_name=<service>[&key=value&key=value...]]

我们在插件市场把它安装好后,就需要对它配置。

image-20250409133852474

我们用的是mysql参考上述链接字符串

mysql+pymysql://root:123456@localhost:3306/test

这里还有一个小技巧,就是如果数据库密码是带有@符号的,我们需要转义一下。否则会出现错误。

image-20250409134100638

​ 上述因为密码也带有特殊符号“@” 和后面的数据链接符号@产生了歧义 这样程序连接就会报错

如何解决

若要借助转义的方式来处理包含特殊字符 @ 的连接字符串,在标准的数据库连接字符串里,一般没有通用转义符号能直接用在字符串里。不过可以对特殊字符 @ 进行 URL 编码,@ 对应的 URL 编码是 %40

最后的变成

mysql+pymysql://root:zzz%40123@192.168.11.84:19030/test_db

这样修改后再连接就OK 了

image-20250409134212354

image-20250409134627114

看到已授权完成配置。

上面2个工具安装和配置完成后,我们进入Agent策略工具的配置操作。

​ 我们从下拉选项中选中我们前面装的Agent,如果只装了一个这里只有一个下拉选项。Agent 策略中有两个,一个是function calling ,另外一个是ReAct 我们选择第二个“ReAct”

image-20250423173855683

下面的模型选择就非常重要的了。建议你选择火山引擎的deepseek v3 模型,其他模型我测试效率效果不太好。AI agent对模型要求比较高。有的模型达不到效果,后面测试的时候这块很容易翻车。切记用我推荐的模型,其他模型跑不出来就别说没看我文章了。

image-20250423174343651

工具列表中,我们选择databse, 里面有个函数我们都选中它。

image-20250423174500827

这里我们还需要有个设置,在text to SQL 点击设置,弹出对话框中 设置一下数据库模型。

image-20250423174700902

这个地方的模型我们也使用火山引擎的deepseek v3 模型,这2块的操作是本工作流的重点,细节比较多,如果不按照我文档的里面步骤 也很容易翻车。如果你翻车了建议你把这块文章在好好看一下,注意哪地方没设置好。

指令这块填写如下内容:

请根据用户输入的{{#sys.query#}}语句和{{#1745388821686.result#}}相关内容实现SQL语句查询

image-20250423174919168

查询这块我们填入 sys.query

迭代次数默认3次,如果模型能力弱可以把这值在该大一点。

image-20250423175022460

以上我们就完成了Agent 节点的配置。

直接回复

下面的直接回复就很简单了,直接把上面Agent输出返回即可。

image-20250423175143715

以上我们就完成了工作流流AI Agent 的搭建了。

3 .AI Agent制作

我们回到工作流 创建一个 AI agent

image-20250423175433108

进入AI agent界面,这个地方配置就比较简单了。

系统提示词 我们这里输入 上面的SQL 语句脚本

image-20250423175539098

接下来 在工具里面配置一下database工具。这个配置比较简单,注意就是模型这个地方

image-20250423175731385

右上角 Agent Mode 我们就选择默认的 ReAct

image-20250423175815487

模型这里我们还是选择火山引擎的deepseek v3 模型

image-20250423175921298

image-20250423175901161

以上我们就完成了AI agent 制作。

4.验证及测试

工作流AI Agent测试

我们在工作流AI Agent工作流,点击“预览按钮” 输入我们的问题

请帮我查询一下student_scores有多少条记录

image-20250423180224438

我们查询一下数据库有多少条记录

image-20250423180450699

OK 数据量对的。

AI Agent测试

接下来我们回到AI Agent 对话窗口中,输入下面的问题

请帮我查询一下student_scores有多少条记录

image-20250423181137977

上面我们通过简单的自然语言实现了一个text2sql,这工作流也可以分享给其他人使用。

分享地址

1 工作流AI Agent

​ 体验地址https://difyhs.duckcloud.fun/chat/0AeKZ94g4TxOAJDK 备用地址(http://14.103.204.132/chat/0AeKZ94g4TxOAJDK)

2 AI Agent

​ 体验地址https://difyhs.duckcloud.fun/chat/ykR8trW3VlmNdtd7 备用地址(http://14.103.204.132/chat/ykR8trW3VlmNdtd7)

相关资料和文档可以看我开源的项目 https://github.com/wwwzhouhui/dify-for-dsl

5.总结

今天主要带大家了解并实现了基于 Dify 知识库与 AI Agent 的 Text2SQL 工作流方案。借助 Dify 提供的功能,我们首先创建了知识库,上传创建表的 SQL 语句文本,完成文本向量的创建。接着制作工作流,添加开始、知识检索、Agent 和直接回复等节点,对每个节点进行细致配置,尤其在 Agent 节点配置中选择合适的工具、模型和策略,完成工作流 AI Agent 的搭建。之后,我们又创建了 AI Agent,配置系统提示词、工具及模型等。总体来说,这个方案属于比较简单的方案,感兴趣的小伙伴可以按照本文步骤去尝试。今天的分享就到这里结束了,我们下一篇文章见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值