奔弛定理与三角形的五星

奔弛定理是一个很有意思的定理

 

很多奔弛定理的证明都利用了几何或者三角函数。是否有一种纯向量的证明,答案是有的。因为面积与向量的外积相联系,可以发现,通过外积确实可以很容易证明这个定理,并能看出其中倒格失的结构。

 

这个证明过程中用除法的地方要取模长

这一性质来自更广泛的倒格矢表示

 

这个证明方法不依赖于图形,可以推广到三角形外的情况。

 

通过奔驰定理,可以建立起三角形五星的向量性质。这是很有用的。也说明奔驰定理是一个很强力的性质。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值