微软面试题Leetcode 1642. 可以到达的最远建筑(贪心加延迟决策)

暴力搜索(超时)

跳不过去时,每次我们可以选择用砖块,也可以选择用梯子,所以我们有如下做法

class Solution {
public:
    int furthestBuilding(vector<int>& heights, int bricks, int ladders) {
        dfs(heights,0,bricks,ladders);
        return res;
    }

    int res = 0;

    void dfs(vector<int>& heights, int i, int bricks, int ladders){
        if(res==heights.size()-1){
            return;
        }
        if(i==heights.size()-1){
            res = i;
            return;
        }
        if(bricks - heights[i+1] + heights[i]<0&&ladders==0){
            res = max(res,i);
            return;
        }
        if(heights[i]>=heights[i+1]){
            dfs(heights,i+1,bricks,ladders);
        }else{
            if(bricks - heights[i+1] + heights[i]>=0){
                dfs(heights,i+1,bricks - heights[i+1] + heights[i],ladders);
            }
            if(ladders>0){
                dfs(heights,i+1,bricks,ladders-1);
            }
        }
    }
};

思考将递归改成记忆话搜索(空间复杂度极大)

 贪心加延迟决策

我们知道梯子一定要用在高度差最大的时候,那么我们如何知道此时高度差最大,我们就要用梯子。答案是我们延迟决策,遇到跳不过去的时候,我们假设能用梯子就用梯子。当梯子用完的时候,我们回头去看前面高度差最小的地方,把它换成砖块。直到砖块不能替换时。此时我们找到了最远的距离。

class Solution {
public:
    int furthestBuilding(vector<int>& heights, int bricks, int ladders) {
        priority_queue<int, vector<int>, greater<int>> q;
        int count = 0;
        for(int i=0;i<heights.size()-1;i++){
            if(heights[i]>=heights[i+1]){
                continue;
            }
            q.push(heights[i+1]-heights[i]);
            count++;
            if(count>ladders){
                int diff = q.top();
                q.pop();
                if(bricks>=diff){
                    bricks-=diff;
                    count--;
                }else{
                    return i;
                }
            }
        }
        return heights.size() - 1;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值