分为三个子程序,input_data直接将图片转化为Tensorflow形式,并转化为batch_size形式,最后注释了的为测试函数
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os
train_dir = "D:\\python学习\\deep_learn\\kaggle\\train\\train\\" # 数据根目录
def get_files(file_dir):
"""
Args:
file_dir: file directory
Returns:
list of images and labels
"""
cats = []
label_cats = []
dogs = []
label_dogs = []
for file in os.listdir(file_dir):
name = file.split(sep='.')
if name[0] == 'cat':
cats.append(file_dir + file)
label_cats.append(0)
else:
dogs.append(file_dir + file)
label_dogs.append(1)
print('There are %d cats\nThere are %d dogs' % (len(cats), len(dogs)))
image_list = np.hstack((cats, dogs))
label_list = np.hstack((label_cats, label_dogs))
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
image_list = list(temp[:, 0])
label_list = list(temp[:, 1])
label_list = [int(i) for i in label_list]
return image_list, label_list
def get_batch(image, label, image_W, image_H, batch_size, capacity):
'''
Args:
image: list type
label: list type
image_W: image width
image_H: image height
batch_size: batch size
capacity: the maximum elements in queue
Returns:
image_batch: 4D tensor [batch_size, width, height, 3], dtype=tf.float32
label_batch: 1D tensor [batch_size], dtype=tf.int32
'''
image = tf.cast(image, tf.string)
label = tf.cast(label, tf.int32)
# make an input queue
input_queue = tf.train.slice_input_producer([image, label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents, channels=3)
######################################
# data argumentation should go to here
######################################
image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
# if you want to test the generated batches of images, you might want to comment the following line.
image = tf.image.per_image_standardization(image)
image_batch, label_batch = tf.train.batch([image, label],
batch_size=batch_size,
num_threads=64,
capacity=capacity)
# you can also use shuffle_batch
# image_batch, label_batch = tf.train.shuffle_batch([image,label],
# batch_size=BATCH_SIZE,
# num_threads=64,
# capacity=CAPACITY,
# min_after_dequeue=CAPACITY-1)
label_batch = tf.reshape(label_batch, [batch_size])
image_batch = tf.cast(image_batch, tf.float32)
return image_batch, label_batch
"""
BATCH_SIZE = 2
CAPACITY = 256
IMG_W = 208
IMG_H = 208
image_list, label_list = get_files(train_dir)
image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
with tf.Session() as sess:
i = 0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop() and i < 1:
img, label = sess.run([image_batch, label_batch])
# just test one batch
for j in np.arange(BATCH_SIZE):
print('label: %d' % label[j]) # j-index of quene of Batch_size
plt.imshow(img[j, :, :, :])
plt.show()
i += 1
except tf.errors.OutOfRangeError:
print('done!')
finally:
coord.request_stop()
coord.join(threads)
"""
model程序用Tensorflow构建了CNN网络,并定义loss,accuracy,traning函数
import tensorflow as tf
def inference(images, batch_size, n_classes):
# 第一层卷积层
with tf.variable_scope('conv1') as scope:
# 卷积核为 3*3,图片的厚度为3,输出是16个featuremap
weights = tf.get_variable('weights',shape=[3,3,3,16],dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[16],dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
# 卷积操作,strides为卷积步长,padding方式为SAME不改变图像大小
conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
# 偏置层
pre_activation = tf.nn.bias_add(conv, biases)
# 激活函数
conv1 =tf.nn.relu(pre_activation, name='conv1')
# 池化层加抑制层
with tf.variable_scope('pooling1_lrn') as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],padding='SAME',name='pooling1')
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
# 第二层卷积层
with tf.variable_scope('con2') as scope:
# 卷积核为 3*3,图片的厚度为16,输出是16个featuremap
weights = tf.get_variable('weights',shape=[3,3,16,16],dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[16], dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
# 卷积操作
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name='conv2')
# 池化抑制层
with tf.variable_scope('pooling2_lrn') as scope:
norm2 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
pool2 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
# 第三层全连接层
with tf.variable_scope('local3') as scope:
# 将输入形状变为一维,这一层全连接输出为128维
reshape = tf.reshape(pool2,shape=[batch_size,-1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable('weights',
shape = [dim, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases', shape=[128], dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name='local3')
# 第四层
with tf.variable_scope('local4') as scope:
# 输入为128,输出也是128
weights = tf.get_variable('weights',
shape = [128,128],
dtype = tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer((0.1))
)
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
# 最后softmax函数变为0,1
with tf.variable_scope('softmax_linear') as scope:
weights = tf.get_variable('weights',
shape=[128, n_classes],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[n_classes],
dtype=tf.float32,
initializer=tf.constant_initializer((0.1))
)
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
return softmax_linear
# 定义损失函数
def losses(logits, labels):
with tf.variable_scope('loss') as scope:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='xentropy_per_example'
)
loss = tf.reduce_mean(cross_entropy, name='loss')
tf.summary.scalar(scope.name + '/loss', loss)
return loss
# 定义训练模型
def trainning(loss, learning_rate):
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
# 定义测试预测模型
def evaluation(logits, labels):
with tf.variable_scope('accuracy') as scope:
correct = tf.nn.in_top_k(logits, labels, 1)
correct = tf.cast(correct, tf.float16)
accuracy = tf.reduce_mean(correct)
tf.summary.scalar(scope.name + '/accuracy', accuracy)
return accuracy
train训练函数
import tensorflow as tf
import numpy as np
import input_data
import model
import os
N_CLASSES = 2 # 输出两个类别
IMG_W = 208 # 修改图片的宽度
IMG_H = 208 # 修改图片的高度
BATCH_SIZE = 32 # 每批数据的大小
CAPACITY = 256 # 容器总量
MAX_STEP = 15000 # 训练步数
learning_rate = 0.0001 # 学习率
train_dir = "D:\\python学习\\deep_learn\\kaggle\\train\\train\\" # 数据根目录
logs_train_dir = "D:\\python学习\\deep_learn\\kaggle" # 模型根目录
def run_training():
# 获取图片和标签集
train, train_label = input_data.get_files(train_dir)
# 将图片转化为tensorflow输入并分批次
train_batch, train_label_batch = input_data.get_batch(train,
train_label,
IMG_W,
IMG_H,
BATCH_SIZE,
CAPACITY
)
# 建立模型
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
# 定义loss function
train_loss = model.losses(train_logits, train_label_batch)
# 训练
train_op = model.trainning(train_loss, learning_rate)
# 获取准确率
train_acc = model.evaluation(train_logits, train_label_batch)
# 合并summary
summary_op = tf.summary.merge_all()
# 开启会话
sess = tf.Session()
# 保存summary
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
saver = tf.train.Saver()
# 初始化模型
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
for step in np.arange(MAX_STEP):
if coord.should_stop():
break
_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
if step % 50 == 0:
print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
summary_str = sess.run(summary_op)
train_writer.add_summary(summary_str, step)
if step % 2000 == 0 or (step + 1) == MAX_STEP:
# 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
# input_data.get_files(train_dir)
run_training()