给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3]
是对称的。
1 / \ 2 2 / \ / \ 3 4 4 3
但是下面这个 [1,2,2,null,3,null,3]
则不是镜像对称的:
1 / \ 2 2 \ \ 3 3
解决方案
方法:递归
如果一个树的左子树与右子树镜像对称,那么这个树是对称的。
因此,该问题可以转化为:两个树在什么情况下互为镜像?
如果同时满足下面的条件,两个树互为镜像:
- 它们的两个根结点具有相同的值。
- 每个树的右子树都与另一个树的左子树镜像对称。
就像人站在镜子前审视自己那样。镜中的反射与现实中的人具有相同的头部,但反射的右臂对应于人的左臂,反之亦然。
上面的解释可以很自然地转换为一个递归函数,如下所示:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool ismirror(TreeNode* p,TreeNode* q)
{
if(p==NULL&&q==NULL)
return true;
if(p==NULL||q==NULL)
return false;
return (p->val==q->val) && (ismirror(p->left,q->right)) && (ismirror(p->right,q->left));
}
bool isSymmetric(TreeNode* root)
{
return ismirror(root,root);
}
};