Leetcode 51/54. N皇后

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回所有不同的 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4
输出: [
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

 

非常经典的DFS算法

class Solution:
    def solveNQueens(self, n):
        """
        :type n: int
        :rtype: List[List[str]]
        """
        if n<1:
            return
        
        self.result = []              #存储结果
        self.cols = set()                #保存不能放的列的位置
        self.pie =  set()              #保存不能放的对角线位置
        self.na =   set()               #保存不能放的反对角线位置
        self.DFS(n,0,[])
        #return self.result
        return self._generate_result(n)
    
    def DFS(self, n, row, cur_state):
        
        if(row>=n):
            self.result.append(cur_state)
            return
        
        for col in range(n):
            if col in self.cols or row+col in self.pie or row-col in self.na:
                continue
            self.cols.add(col)
            self.pie.add(row+col)
            self.na.add(row-col)
            self.DFS(n,row+1,cur_state+[col])
            self.cols.remove(col)
            self.pie.remove(row+col)
            self.na.remove(row-col)
        
    def _generate_result(self, n):
        board = []
        for res in self.result:
            for i in res:
                board.append("."*i + "Q" + "." * (n-1-i))
                
        return [board[i:i+n] for i in range(0, len(board), n)]
        

只统计解法的个数

class Solution:
    def totalNQueens(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n<1:
            return
        self.result = 0                #存储结果
        self.cols = set()              #保存不能放的列的位置
        self.pie =  set()              #保存不能放的对角线位置
        self.na =   set()              #保存不能放的反对角线位置
        self.DFS(n,0)
        return self.result
    
    def DFS(self, n, row):
        
        if(row>=n):
            self.result+=1
            return
        
        for col in range(n):
            if col in self.cols or row+col in self.pie or row-col in self.na:
                continue
            self.cols.add(col)
            self.pie.add(row+col)
            self.na.add(row-col)
            self.DFS(n,row+1)
            self.cols.remove(col)
            self.pie.remove(row+col)
            self.na.remove(row-col)
        

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值