2019 美团校招笔试题 外卖满减

时间限制:1秒

空间限制:65536K

你打开了美了么外卖,选择了一家店,你手里有一张满X元减10元的券,店里总共有n种菜,第i种菜一份需要A_i元,因为你不想吃太多份同一种菜,所以每种菜你最多只能点一份,现在问你最少需要选择多少元的商品才能使用这张券。

输入描述:

第一行两个正整数n和X,分别表示菜品数量和券的最低使用价格。(1≤n≤100, 1≤X≤10000) 接下来一行n个整数,第i个整数表示第i种菜品的价格。(1≤A_i≤100)

输出描述:

一个数,表示最少需要选择多少元的菜才能使用这张满X元减10元的券,保证有解。

输入例子1:

5 20
18 19 17 6 7

输出例子1:

23

这道题目使用直接DFS去做,时间复杂度为2^n, 只能通过很小一部分。从给的例子可以看出,贪心的做法是不可取的。所以考虑动态规划解法

定义状态dp[i][j] 表示购买前i个物品,超过金额j的最小金额数

容易状态转移方程如下:

dp[i][j] = min(dp[i-1][j], dp[i-1][j-num[i]]+num[i]) if j>num[i]

dp[i][j]= min(dp[i-1][j], num[i]) j<=num[i] 买前i-1件商品或买当前商品

#include <iostream>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 10010;
int arr[N];
int dp[N][N];

// dp[i][j] 表示前i件商品满j元的最小金额
// dp[i][j] = min(dp[i-1][j],dp[i-1][j-num[i]]+num[i]) if j>num[i]
//   if j<=num[i] dp[i][j] = min(num[i],dp[i-1][j])
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>arr[i];
    for(int i=0;i<=m;i++)
        dp[0][i] = N;         // 用MAX_INT会越界
    for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            if(j<=arr[i]){
                dp[i][j] = min(arr[i],dp[i-1][j]);
            }
            else dp[i][j] = min(dp[i-1][j],dp[i-1][j-arr[i]]+arr[i]);
        }
    }
    cout<<dp[n][m]<<endl;
    
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值