时间限制:1秒
空间限制:65536K
你打开了美了么外卖,选择了一家店,你手里有一张满X元减10元的券,店里总共有n种菜,第i种菜一份需要A_i元,因为你不想吃太多份同一种菜,所以每种菜你最多只能点一份,现在问你最少需要选择多少元的商品才能使用这张券。
输入描述:
第一行两个正整数n和X,分别表示菜品数量和券的最低使用价格。(1≤n≤100, 1≤X≤10000) 接下来一行n个整数,第i个整数表示第i种菜品的价格。(1≤A_i≤100)
输出描述:
一个数,表示最少需要选择多少元的菜才能使用这张满X元减10元的券,保证有解。
输入例子1:
5 20 18 19 17 6 7
输出例子1:
23
这道题目使用直接DFS去做,时间复杂度为2^n, 只能通过很小一部分。从给的例子可以看出,贪心的做法是不可取的。所以考虑动态规划解法
定义状态dp[i][j] 表示购买前i个物品,超过金额j的最小金额数
容易状态转移方程如下:
dp[i][j] = min(dp[i-1][j], dp[i-1][j-num[i]]+num[i]) if j>num[i]
dp[i][j]= min(dp[i-1][j], num[i]) j<=num[i] 买前i-1件商品或买当前商品
#include <iostream>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 10010;
int arr[N];
int dp[N][N];
// dp[i][j] 表示前i件商品满j元的最小金额
// dp[i][j] = min(dp[i-1][j],dp[i-1][j-num[i]]+num[i]) if j>num[i]
// if j<=num[i] dp[i][j] = min(num[i],dp[i-1][j])
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>arr[i];
for(int i=0;i<=m;i++)
dp[0][i] = N; // 用MAX_INT会越界
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
if(j<=arr[i]){
dp[i][j] = min(arr[i],dp[i-1][j]);
}
else dp[i][j] = min(dp[i-1][j],dp[i-1][j-arr[i]]+arr[i]);
}
}
cout<<dp[n][m]<<endl;
}