给定一个包含非负数的数组和一个目标整数 k,编写一个函数来判断该数组是否含有连续的子数组,其大小至少为 2,总和为 k 的倍数,即总和为 n*k,其中 n 也是一个整数。
示例 1:
输入: [23,2,4,6,7], k = 6
输出: True
解释: [2,4] 是一个大小为 2 的子数组,并且和为 6。
示例 2:
输入: [23,2,6,4,7], k = 6
输出: True
解释: [23,2,6,4,7]是大小为 5 的子数组,并且和为 42。
说明:
数组的长度不会超过10,000。
你可以认为所有数字总和在 32 位有符号整数范围内。
这道题目用前缀和Hash优化处理,特殊情况有点多,需要都特判,时间复杂度为O(N)
class Solution {
public:
bool checkSubarraySum(vector<int>& nums, int k) {
if(nums.size() < 2) return false;
for(int i = 0; i < nums.size()-1; ++i)
if(nums[i] == 0 && nums[i+1] == 0) return true; // 两个连续的0都是对的
if(k==0) return false;
if(k<0) k=-k;
if(k==1) return true;
// 上面全是特殊情况
unordered_map<int,int> Hash;
Hash[0] = -1; // 哨兵
int sum = 0;
for(int i=0;i<nums.size();i++){
sum+=nums[i];
int mod = sum%k;
cout<<mod<<endl;
if(Hash.count(mod) && i-Hash[mod]>1)
return true;
else
Hash[mod] = i;
}
return false;
}
};