机器学习基础__03__梯度下降法

本文介绍了梯度下降法的基础知识,包括梯度的概念、方向导数、梯度下降法的三种形式:批量梯度下降、随机梯度下降和小批量梯度下降。重点讨论了每种形式的优缺点以及它们在参数更新中的应用。
摘要由CSDN通过智能技术生成

目录

1. 什么是梯度

1.1 方向导数

1.2 梯度

1.3  为什么沿着梯度方向函数增长最快

2. 梯度下降法

3. 梯度下降法的三种形式

3.1 批量梯度下降

3.2 随机梯度下降

3.3 小批量梯度下降


1. 什么是梯度

梯度是一个向量。(有大小有方向)

1.1 方向导数

导数
导数表示切线的斜率,公式如下:
                               f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
 

导数的物理意义表示函数在这一点的 (瞬时) 变化率。

 

偏导数
导数是针对单个自变量,考虑的是曲线上的切线,曲线上某个点的切线只有一条。
偏导数是针对多个自变量,考虑的是曲面上的,曲面上某个点的切线有无数条。

因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于 y 轴(平行于 xOz 平面)的切线,以及垂直于 x 轴(平行于 yOz 平面)的切线。
                                          
 

偏导数的物理意义表示函数沿着坐标轴正方向上的变化率。

方向导数
偏导数研究的是指定方向 (坐标轴方向) 的变化率,而方向导数是研究任意方向的变化率。
方向导数的物理意义表示函数在某点沿着某一特定方向上的变化率。

1.2 梯度

某个函数的方向导数有很多,最大的那个就是梯度。
函数在某点的梯度是一个向量,它的方向就是方向导数最大值的那个方向。
梯度方向函数值增加最快,梯度负方向函数值减小最快。

梯度公式
设二元函数f(x, y)在点p(x_0, y_0)处具有一阶偏导数,则定义
                            grad(f)_p = \{f_x^{'}(p), f_y^{'}(p)\}
f(x, y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值