目录
1. 什么是梯度
梯度是一个向量。(有大小有方向)
1.1 方向导数
导数
导数表示切线的斜率,公式如下:
导数的物理意义表示函数在这一点的 (瞬时) 变化率。
偏导数
导数是针对单个自变量,考虑的是曲线上的切线,曲线上某个点的切线只有一条。
偏导数是针对多个自变量,考虑的是曲面上的,曲面上某个点的切线有无数条。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于 y 轴(平行于 xOz 平面)的切线,以及垂直于 x 轴(平行于 yOz 平面)的切线。
偏导数的物理意义表示函数沿着坐标轴正方向上的变化率。
方向导数
偏导数研究的是指定方向 (坐标轴方向) 的变化率,而方向导数是研究任意方向的变化率。
方向导数的物理意义表示函数在某点沿着某一特定方向上的变化率。
1.2 梯度
某个函数的方向导数有很多,最大的那个就是梯度。
函数在某点的梯度是一个向量,它的方向就是方向导数最大值的那个方向。
梯度方向函数值增加最快,梯度负方向函数值减小最快。
梯度公式
设二元函数在点处具有一阶偏导数,则定义
为在