通过设置可变参数来完成Jmeter对接口的压测

一、摘要

本文主要介绍如何使用jmeter对服务端接口发起http请求,以及如何设置可变参数来发起http请求。

二、背景

新的项目需要了解Phoenix在高并发情况下的查询效率,所以使用Jmeter对phoenix查询进行压力测试。原先我们已经构建了一个自定义查询服务,所以本次测试直接直接向自定义查询服务端发起查询请求,而在执行sql的开始和结束位置记录查询执行的时间即可。而在这期间我们需要通过jmeter来对服务端接口发起查询请求。

三、正文

场景1:使用固定的参数来对服务端接口发起请求

步骤1:新建线程组

打开jmeter,右击测试计划,如下图所示添加线程组。
在这里插入图片描述
通过设置如下部分的参数可以调整请求的并发数。
在这里插入图片描述

步骤2:添加Http请求

右键线程组,添加Http请求(因为我们主要是对接口发起请求,所以添加的是Http请求)
在这里插入图片描述

步骤3:设置接口以及接口参数来段服务端发起请求

在这里插入图片描述

步骤4:并添加查看结果数查看请求是否发送成功

1.添加查看结果数
在这里插入图片描述
2.发起请求
在这里插入图片描述

步骤5:查看服务端日志来记录查询时间

由于服务端的sql查询任务是异步查询的,所以接口返回的只是服务端查询任务的uuid,所以我们需要在服务端添加日志来查看查询的执行时间。所以通过分析查询日志我们即可获得执行phoenix查询的效率。
在这里插入图片描述

场景2:使用可变参数来对服务端接口发起请求

场景1中我们已经简单介绍了如何使用Jmeter对服务端发送查询请求,但是存在一个问题,就是每次接口请求的参数值都相同。 /api/execute.do接口存在如下五个参数:

参数名称参数值解释
tokenc2a161c742894180862eeabf7019ab72用户标识,服务端会根据该标识判断是否有查询指定表的权限
up_time155054135465413位时间戳,查询时间
versionV2.3.0版本号
queryselect imei,sum(count_num) from cn_nubia_processmanager.p_test_charge_statistic_ds WHERE imei in (‘864476020902153’,‘863784024020662’,‘863784024029036’) group by imei发送到服务端的查询sql
signdc83641fc74f0e9f1c4b2f39af5d00d1979f5d6b名值,根据当前的参数算出的签名值。发送到服务端,服务端会通过请求参数,进行签名校验

即便我们随便调整线程数,但是每一个线程发送到服务端的查询sql都是一样的,这显然和实际情况是不相符的。所以我们希望在设置并发数的时候,每一个查询请求发送的查询的sql各不相同。那么我们就需要将query的参数设置成可变的,而与此同时sign的参数也必须是可变的(因为sign的值是通过其它4个参数值计算的)。为了实现上面的需求我们需要通过写java代码来实现,具体的步骤如下所示。

步骤1:新建一个java工程,并将代码打成可执行的jar包

新建工程以及如何打成jar包可以自行百度。
1.签名生成工具类: GenApiSigin.java:

package com.test;

import org.apache.commons.lang3.StringUtils;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Map;

/**
 * @Author: Vincent
 * @Date 2018/4/24
 **/
public class GenApiSigin {
    private static final String SDK_SERVER_KEY = "customquerytest";

    public static String genSign(Map<String, String> argsMap) {
        StringBuffer strBuffer = new StringBuffer();
        for (String key : argsMap.keySet()) {
            if (StringUtils.isNotEmpty(argsMap.get(key))) {
                strBuffer.append(key).append("=").append(argsMap.get(key));
            }
        }
        strBuffer.append(SDK_SERVER_KEY);
        MessageDigest messageDigest = null;
        try {
            messageDigest = MessageDigest.getInstance("SHA1");
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        }
        messageDigest.update(strBuffer.toString().getBytes());
        byte[] bytes = messageDigest.digest();
        StringBuffer hex = new StringBuffer(bytes.length * 2);

        for (int i = 0; i < bytes.length; i++) {
            if ((bytes[i] & 0xff) < 16) {
                hex.append('0');
            }
            hex.append(Integer.toHexString(0xff & bytes[i]));
        }
        return hex.toString();
    }
}

2.随机sql获取类SqlList.java:

package com.test;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

/**
 * @author Vincent Wu
 * @date 2019/2/20 20:35
 */
public class SqlList {
    private List<String> list = new ArrayList<String>();
    private Random random;

    public SqlList() {
        init();
        random = new Random();
    }

    public String getRandomSql() {
        return list.get(random.nextInt(list.size()));

    }

    public void init() {
        list.add("select imei,sum(count_num) from cn_nubia_processmanager.p_test_charge_statistic_ds WHERE imei in " +
                "('864476020902153','863784024020662','863784024029036')  group by imei");
        /** 此处省略N条查询sql*/
        list.add("select imei,sum(count_num) from cn_nubia_processmanager.p_test_charge_statistic_ds WHERE imei in " +
                "('355927032711777','864476021102163','862018021313257')  group by imei");
    }
}

3.封装查询参数QueryParams.java:

package com.test;

import java.util.Map;
import java.util.TreeMap;

/**
 * @author Vincent Wu
 * @date 2019/2/21 9:17
 */
public class QueryParams {
    private final String token;
    private final String upTime;
    private final String version;
    private final String query;

    private QueryParams(Builder builder) {
        this.token = builder.token;
        this.upTime = builder.upTime;
        this.version = builder.version;
        this.query = builder.query;
    }

    public static class Builder {
        private final String token;
        private final String upTime;
        private final String version;
        private String query;

        public Builder(String token, String upTime, String version) {
            this.token = token;
            this.upTime = upTime;
            this.version = version;
        }

        public Builder setQuery(String query) {
            this.query = query;
            return this;
        }

        public QueryParams build() {
            return new QueryParams(this);
        }
    }

    public String createSign() {
        Map<String, String> argsMap = new TreeMap<>();
        argsMap.put("token", this.token);
        argsMap.put("up_time", this.upTime);
        argsMap.put("version", this.version);
        argsMap.put("query", this.query);
        return GenApiSigin.genSign(argsMap);
    }
}

4.将打包后的jar包,放到apache-jmeter-3.0\lib\ext目录下
在这里插入图片描述

步骤2:新建如场景1中的步骤新建http请求

在这里插入图片描述

步骤3:添加BeanShell PreProcessor

1.右键新增的http请求,并添加前置处理器BeanShell PreProcessor
在这里插入图片描述
2.编写been shell脚本
在这里插入图片描述

步骤4:添加查看结果数查看接口请求结

同场景1中的步骤4。

步骤5:编写日志分析工具来分析查询执行效率

因为服务端的输出日志存在一定格式,所以我们可以编写简单的代码分析查询效率。

import java.io.*;
import java.util.ArrayList;
import java.util.List;

/**
 * @author Vincent Wu
 * @date 2019/2/21 18:17
 */
public class LogParseTest {
    public static void main(String[] args) throws IOException {
        FileInputStream fis = new FileInputStream("D:\\test\\简单sql\\test.log-2000");
        BufferedReader br = new BufferedReader(new InputStreamReader(fis));
        List<Long> timeList = new ArrayList<>();

        String line;
        while ((line = br.readLine()) != null) {
            if (line.contains("Query time is --->")) {
                String[] arrStr = line.split("Query time is --->");
                if (arrStr[1].length() < 10) {
                    long time = Long.valueOf(arrStr[1].trim());
                    timeList.add(time);
                }
            }
        }

        long min = timeList.get(0);
        long max = timeList.get(0);
        long sum = 0;

        for (long time : timeList) {
            if (time > max) {
                max = time;
            }
            if (min > time) {
                min = time;
            }
            sum += time;
        }

        System.out.println("total--->" + timeList.size());
        System.out.println("min--->" + min);
        System.out.println("max--->" + max);
        System.out.println("avg--->" + sum * 1.0 / timeList.size());
    }
}

在这里插入图片描述

四、结束语

1.经过压测的结果发现,phoenix支持建立二级索引,并且对于简单的sql查询phoenix的并发效果还是挺不错的。
2.以前对Jmeter不是很了解,这次因为实际项目中有用到。所以写了本文记录了一下,其实Jmeter还有很多功能,等待我后续慢慢去发觉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值