省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
3 ?
基本上也是套模板做的,就模板内容来说没啥大区别 经典的kru啥算法模板,但就是在?这个输出上有点麻烦,但其实也就是根据看下在整个程序完成后有多少个根节点 如果根节点等于一个的话就代表可以连通 反之代表不能连通,输出?(注意 一定是先判断连通的情况 不然就WA了QAQ),代码如下:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 100010
using namespace std;
int par[N];
int hight[N];
struct edge
{
int u,v,cost;
};
edge G[N];
int E,V;
void Init_union_find(int n)
{
for(int i=0; i<=n; i++)
{
par[i]=i;
hight[i]=0;
}
}
int find(int x)
{
if(par[x]==x)
return x;
else
return par[x]=find(par[x]);
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)
return ;
if(hight[x]<hight[y])
par[x]=y;
else
{
par[y]=x;
if(hight[x]==hight[y])
hight[x]++;
}
}
bool same(int x,int y)
{
return find(x)==find(y);
}
bool cmp(edge a,edge b)
{
return a.cost<b.cost;
}
int kruskal()
{
sort(G,G+E,cmp);
Init_union_find(V);
int ans=0;
for(int i=0; i<E; i++)
{
edge e=G[i];
if(!same(e.u,e.v))
{
unite(e.u,e.v);
ans+=e.cost;
}
}
return ans;
}
int main()
{
while(scanf("%d %d",&E,&V)&&E)
{
for(int i=0;i<E;i++)
{
scanf("%d %d %d",&G[i].u,&G[i].v,&G[i].cost);
}
int k;
k=kruskal();
int h=0;
for(int i=1;i<=V;i++)
{
if(find(i)==i)
h++;
}
if(h==1)
printf("%d\n",k);
else
printf("?\n");
}
return 0;
}
总的来说 就是模板题