【线性回归】生产应用中使用线性回归进行实际操练

本文通过实际生产环境中的用户使用数据,运用线性回归模型进行预测。考虑到数据呈现正弦趋势及周末异常点,构建包含sin(x)和周末特征的模型。经过训练和拟合,得出模型参数,并对未来的使用量进行预测,发现模型在应对特定日期(如周末)时可能存在较大梯度变化,提出多月数据训练以优化模型的建议。
摘要由CSDN通过智能技术生成

前提:本文中使用的算法是在《【线性回归】多元线性回归函数在Octave中的实现(二)》中进行描述。
命题:
根据生产环境的中的用户功能使用情况,来推断接下来的用户使用量。
使用数据如下:

x =
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17

y =

    6144
    3372
   21119
   15909
   15049
   12045
   10106
    2890
    3069
   11787
    9221
    7300
    5785
    3372
    1613
    1396
    1968

说明:
X表号天数(1,代表2018-12-01号;以后类似)
输出(Y):使用量,表示当天的使用量

以上就是实际如果,需要对之进行模拟,求解01-20,01-21号类似的预计用户使用情况。

思路:
1、首先直接的显示数据,以分析大概需要使用什么样的模型进行回归。Octave中数据显示如下:
在这里插入图片描述

根据以上图形可以分析出以下两点:
1、看出应该大概是一个正弦函数的样子。那在进行模型设计的时候&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值