下个月初开始,新的一期课程为airtest自动化平台。然后我就在想,是不是可以把AI的技术应用到各种自动化脚本的优化和打分、误报率预测等技术点上?
然后这种技术集成到自动化测试平台,这样平台就不止可以有管理、运行、监控、报告等作用,还能利用历史运行的报告和脚本代码,对新脚本本身进行优化...
包括但不限于:
(注意,因为脚本运行条件复杂,所以AI仅限于静态走读,即:不运行脚本,直接根据脚本代码和测试工程师输入的相关信息,以平台历史数据为基础生成模型,对新脚本进行打分/优化/预测)
1. 脚本打分【根据代码冗余、空时复杂度、是否具有初始化和收尾、健壮性、容错性等指标。】
2. 脚本优化【根据打分结果和平台已有脚本的历史优化修改记录,生产优化建议】
3. 脚本预测 【预测运行时间、误报率、发现bug率等指标】
PS: 无论如何,AI的具体技术点都是一个持续发展和成长的过程,所以任何模型一开始在数据量少、校验少的情况下,都只能作为一个参考性建议。而不能替代测试工程师直接对代码进行改变,否则引发的各种后果将可能会很严重,而且无论结果如何,都是不可预测的,只要是不可预测,那么将毫无价值... 因为风险我们承担不起。所以,最终一关一定要我们测试人员亲自把握和检查。
之后我会在公众号中,持续更新单脚本的实验结果简单版本,欢迎大家提出宝贵建议。
如果可以在下期的airtest自动化脚本集成平台中实验成功,那么往期的各种ui自动化平台,接口自动化平台,和未来的自动化相关平台都可以加入了,就可以加入WQRF豪华午餐套餐中了!
行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群: 759968159,里面有各种测试开发资料和技术可以一起交流哦。
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。