告别手写脚本!Python+DeepSeek一键生成高覆盖率测试用例(实操)

该文章已生成可运行项目,

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


传统测试设计耗时占比超40%,而AI工具可3分钟内生成覆盖核心路径的用例矩阵,解放测试工程师生产力

本文将手把手教你通过 Python+DeepSeek-R1 API 实现从需求文档到高覆盖测试用例的全自动生成流程,并提供可直接运行的代码示例与调优技巧。

一、DeepSeek生成测试用例的核心流程

关键阶段:

  1. 需求预处理 → 2. AI模型解析 → 3. 用例生成 → 4. 可视化输出

二、需求文档编写规范(输入质量决定输出质量)

最佳实践模板:

# 测试对象:用户登录模块  
## 输入参数  
- 用户名:6-20位字母/数字组合,首字符必须为字母  
- 密码:8-16位,需包含大写字母、小写字母、数字  
- 验证码:4位数字  

## 业务规则  
- 连续失败5次锁定账户30分钟  
- 验证码错误不计入失败次数  
- 支持中英文双语界面切换  

注意:需明确标注边界条件(如用户名字符长度边界)和隐式规则(如锁定后解锁机制)

三、Python调用DeepSeek生成测试用例(附完整代码)
步骤1:安装依赖并配置API
pip install requests python-dotenv  

在.env文件中配置密钥:

DEEPSEEK_API_KEY = "sk_your_api_key_here"  
步骤2:执行用例生成脚本
import os  
import requests  
from dotenv import load_dotenv  

load_dotenv()  

def generate_test_cases(requirement_text):  
    url = "https://api.deepseek.com/v1/chat/completions"  
    headers = {"Authorization": f"Bearer {os.getenv('DEEPSEEK_API_KEY')}"}  
    
    # 关键Prompt结构:cite[3]  
    prompt = f"""  
    你是一名资深电商系统测试专家,请基于以下需求生成测试用例:  
    {requirement_text}  
    
    —— 要求 ——  
    1. 使用ICOAST模型覆盖7个维度:  
       - Input:有效/无效输入组合  
       - Configuration:中英文环境  
       - State:账户正常/锁定状态  
    2. 输出包含:  
       用例编号 | 优先级 | 测试步骤 | 预期结果 | 实际结果  
    3. 生成20条基础用例+10条边界用例  
    4. 表格格式:Markdown三线表  
    """  
    
    payload = {  
        "model": "deepseek-r1",  
        "messages": [{"role": "user", "content": prompt}],  
        "temperature": 0.3  
    }  
    response = requests.post(url, json=payload, headers=headers)  
    return response.json()["choices"][0]["message"]["content"]  

# 读取需求文档  
with open("requirements.md", "r") as f:  
    req_text = f.read()  

test_cases = generate_test_cases(req_text)  
print(test_cases)  

输出示例:

四、生成Xmind思维导图(3分钟可视化评审)
方法1:在线工具实时转换
  1. 复制DeepSeek生成的Markdown用例

  2. 访问 Markmap 粘贴内容

  3. 自动生成可交互思维导图

方法2:Python自动转换(需安装markmap)
npm install -g markmap-cli  
echo "# Test Cases\n${test_cases}" > cases.md  
markmap cases.md --output test_cases.html  
导图效果:
  1. 根节点:功能模块名

  2. 一级分支:正向场景 / 逆向场景 / 性能场景

  3. 叶子节点:具体用例步骤与预期

五、生成用例的调优技巧
1. 提升边界覆盖:使用ITAG模型强化异常测试
# 在Prompt中添加专项指令:cite[3]  
prompt += """  
# 专项:边界值测试  
针对[密码字段]生成:  
- 最小值-1(7位密码)  
- 最大值+1(17位密码)  
- NULL值测试  
"""
2. 增加安全测试:自动注入OWASP攻击用例
prompt += """  
# 安全测试覆盖  
生成OWASP TOP10用例:  
- SQL注入:用户名输入 ' OR 1=1--  
- XSS攻击:密码字段输入 <script>alert(1)</script>  
"""
3. 与自动化脚本联动:
# 要求输出Pytest适配格式  
prompt += "将高风险用例转换为Pytest脚本模板"
生成结果:
def test_sql_injection():  
    username = "' OR 1=1--"  
    password = "ValidPass123!"  
    response = login(username, password)  
    assert "登录失败" in response.text  
六、进阶应用:全链路自动化测试平台

整合框架:

工具推荐:

用例维护:AutoGenTestCase(自动更新变更用例)

脚本执行:Playwright+DeepSeek 元素定位修复

持续集成:GitHub Actions定时触发用例生成

结语:AI测试工程师的核心能力迁移

“未来测试的核心价值不在用例编写,而在需求抽象能力与AI指令工程水平”——引自《AI测试工程师成长指南》

通过本文方案,团队可实现:

✅ 用例设计效率提升5倍:30分钟任务缩短至5分钟

✅ 边界覆盖率提升40%:自动识别易遗漏场景

✅ 维护成本降低70%:需求变更后一键重新生成

Python开发视频资料

链接: https://pan.baidu.com/s/1HOZYij3BpxcqOMb0eIK32w?pwd=5y87

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】

​​

本文章已经生成可运行项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值