最近,总是收到粉丝的询问:有没有 AI 能自动生成 PPT?发现这是大家非常普遍的一个需求。但是似乎目前没有一个特别完美的工具,能一键生成高质量的可用 PPT。
直到前几天,我发现了使用几个工具的组合,可以满足绝大多数 PPT 制作场景。即:
GPT/Claude/文心一言+Gamma+Napkin AI
的一套组合方案。
以生成一套科普性质的“人工智能发展简史”为例,向大家主要介绍一下 Gamma 和 Napkin 这两个工具的使用:
1. 大纲与内容生成
我这里使用 Claude3.5-Sonnet 生成文稿所需要的大纲和内容,并且要求它直接输出 Markdown 格式。如果是特别专业的领域,建议你结合自己的知识与 AI 生成内容,完成文稿。
2. 生成 PPT
文稿生成后,就可以使用 Gamma 进行 PPT 的生成了。打开 Gamma 的主页:
https://gamma.app/
选择“新建”按钮:
弹出”使用 AI 创建“的按钮。我们已经生成了文本,可以直接选择”粘贴文本“的选项:
当然你也可以这个页面中选择_使用 AI 生成和导入文件__,现在导入文件支持以下的格式:_
Gamma 的文本框支持 Markdown 格式的文本内容识别。左侧选择页面风格,图片生成的模型之后,点击“继续’:
目前普通用户支持最多一次生成 9 张页面的 PPT,Pro 用户最多可以生成 30 张。选几个页面看下它生成的效果:
在 PPT 文稿右侧,可以继续修改页面的布局,这里就不展开了,大家可以去试试,智能布局的种类很多,日常工作使用足够了:
3. 视觉图示制作
做 PPT 或写文章经常遇到的一个问题是,如果我有一段文字,想把这段文字转换成“图示”的方式,AI 能帮忙吗?
我之前使用 Excalidraw 这款在线工具,但是 AI 生成的操作有些复杂,需要先生成 Mermaid 代码,再粘贴至 Excalidraw 中,特别适合流程图、思维导图的制作,但是再稍微复杂一些的图示就很难了。
直到我发现了 Napkin AI 这个工具。https://app.napkin.ai/
比如,我想单独介绍一下 QLoRA 技术。我已经有了 QLoRA 的介绍文本,现在想生成针对某些内容的视觉展示。
打开 Napkin AI 的主页,使用邮箱注册,然后在主页粘贴文字:
选中想生成图示的文字,点击左侧的蓝色闪电,就可以根据文本生成对应的图示:
上下滑动,就可以切换图示风格:
对于生成的图示,还可以对其中的文字、图形元素进行个性化修改:
生成的图示可以直接导出为 PNG、SVG 或 PDF 格式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。