Hankson的趣味题

Hankson的趣味题

时间限制: 1 Sec   内存限制: 128 MB
[ 提交][ 状态][ 讨论版]

题目描述

已知正整数a0,a1,b0,b1。设某未知正整数x 满足:
1. x 和a0 的最大公约数是a1;
2. x 和 b0 的最小公倍数是 b1。
求解满足条件的 x 的个数

输入

第一行为一个正整数n,表示有n 组输入数据。接下来的n 行每行一组输入数据,为四
个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证a0 能被a1 整

除,b1 能被b0 整除。


[说明]:
第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。
第二组输入数据,x 可以是 48、1776,共有 2 个。
[数据规模]:
对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。
对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

输出

若不存在这样的 x,请输出0;
若存在这样的 x,请输出满足条件的 x 的个数;

样例输入

2
41 1 96 288
95 1 37 1776
解题思路:首先由最大公因数和最小公倍数的性质可知,令 p=a0/a1,q=b1/b0,它们与X的公因数为1,并且x也是b1(最小公倍数)的一个因子,
所以 令x从1到sqrt(b1)中是b1(最小公倍数)的一个因子,除此外还有b1/x ,也可能是其中一个因子,用以上条件判断

1. int gcd(int a,int b) {       //求最大公因数 
    return b==0?a:gcd(b,a%b);
}
2.判断gcd(x/a1,p)==1&&gcd(q,b1/x)==1;

代码如下:

#include<stdio.h>
int gcd(int a,int b) { //求最大公因数 
    return b==0?a:gcd(b,a%b);
}
int main() {
    int T;
    scanf("%d",&T);
    while(T--) {
        int a0,a1,b0,b1;
        scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
        int p=a0/a1,q=b1/b0,ans=0;
        for(int x=1;x*x<=b1;x++) 
            if(b1%x==0){  //x是b1的一个因子 
                if(x%a1==0&&gcd(x/a1,p)==1&&gcd(q,b1/x)==1) ans++;
                int y=b1/x;      //y是另一个因子 
                if(x==y) continue; 
                if(y%a1==0&&gcd(y/a1,p)==1&&gcd(q,b1/y)==1) ans++;
            }
        printf("%d\n",ans);
    }
    return 0;
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值