01.机器学习第一站-初识机器学习

本文首先阐述了人工智能、机器学习及深度学习之间的关系,随后详细解释了机器学习的基本概念,包括其从数据中自动分析获得模型的过程,以及利用模型对未知数据进行预测的能力。文章进一步区分了监督学习和无监督学习的不同应用场景,如分类、回归问题等,并概述了机器学习的开发流程。
摘要由CSDN通过智能技术生成

1.基本了解

首先,了解一下人工智能(AI),机器学习(ML),深度学习(DL)三者的关系,如下图:

总结:机器学习是人工智能的一个实现途径;深度学习是机器学习的一个方法发展而来。

2.概念知悉

1》机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。

2》机器学习学习算法分类:

  • 监督学习--有目标值,目标值是类别型,则称作分类;目标值是连续型,则称作回归。
  • 无监督学习--无目标值

      举例说明:

  1. 预测明天的气温是多少度?---回归问题
  2. 人脸识别?---分类问题
  3. 人脸年龄预测?---回归/分类(具体情况具体分析)
  4. 预测明天是晴天还是阴天?---分类问题

3.机器学习开发流程

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值