【问题描述】
FC星有许多城市,城市之间通过一种奇怪的双向高速公路进行交流,每条公路都对行驶在上面的飞车限制了固定的速度,同时FC星人对飞车的“舒适度”有特殊要求,即乘坐过程中最高速度与最低速度的差越小乘坐越舒服,但对时间却没那么多要求。要注意的是FC人的飞车能瞬间提速或降速。现在需要你找出一条城市间的最舒适的路径。
【输入格式】
第一行有2个正整数N(1< N<=300)和M(M<=25000),表示有N个城市和M条双向高速公路。接下来的M行,每行是三个正整数x,y,speed,分别表示城市x、y间的高速公路上飞车必须以speed速度行驶。
第m+2行是一个正整数Q(Q<1000),接下来Q行每行有2个正整数x,y,表示询问城市x到y的舒适度。
【输出格式】
有Q行,对应输入的Q个查询,第i行的整数表示对应查询的两个城市间的最高速与最低速的差的最小值。如果起点和终点不能到达,那么输出-1。
【输入样例】
6 7
1 2 8
1 4 7
2 3 1
3 4 9
3 6 5
4 5 3
5 6 10
2
1 6
2 5
【输出样例】
4
5
【数据范围】
1< N<=300
M<=25000
Q<1000
0< speed<=1000000000
因为要比较最高速与最低速的差,所以要枚举最高(低)速的边,再贪心由小到大向并查集空边图中连边直到起点和终点的根是同一个(起点和终点有一条路径相通),将最高速和最低速的边权相减找到最小值。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=302,inf=1000000020;
int n,m,q,x,y,s,d,c,fa[maxn];
struct edge
{
int u,v,w;
};
vector<edge>g;
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
void initial()
{
for(int i=1;i<=n;i++)
fa[i]=i;
}
int find(int i)
{
if(i==fa[i]) return i;
return find(fa[i]);
}
void Union(int x,int y)
{
fa[find(y)]=find(x);
}
bool judge(int x,int y)
{
if(find(x)==find(y)) return 1;
return 0;
}
int main()
{
//freopen("1.txt","r",stdin);
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&c);
g.push_back((edge){x,y,c});
}
scanf("%d",&q);
sort(g.begin(),g.end(),cmp); //由小到大排序
for(int t=1;t<=q;t++)
{
scanf("%d%d",&s,&d);
int ans=inf;
for(int i=0;i<g.size();i++) //枚举最小边
{
initial();
for(int j=i;j<g.size();j++)
{
Union(g[j].u,g[j].v); //空边图连边找最大边
if(judge(s,d))
{
ans=min(ans,g[j].w-g[i].w);
break;
}
}
}
if(ans==inf) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}