二叉树层序遍历
题目链接:二叉树的层序遍历
文章讲解:代码随想录|二叉树的层序遍历
视频讲解:讲透二叉树的层序遍历 | 广度优先搜索 | LeetCode:102.二叉树的层序遍历
思路
借用辅助数据结构:队列
队列先进先出,符合一层一层遍历的逻辑,而栈先进先出适合模拟深度优先遍历也就是递归的逻辑实现
都是在弹出父节点的时候,对子节点进行处理
对于层序遍历来说,就是每弹出一个节点时,放入队列其左右子节点
当弹出一层的节点,也就放入了下一层所有的节点,这个时候记录下队列的长度size(控制后面弹出的节点数量),也就是该层的所有节点的数量
再用记录的长度size一个一个弹出,再放入下一层节点
代码
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) { // 循环每一层
int size = que.size();
vector<int> vec;
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
226.翻转二叉树
题目链接:226.翻转二叉树
文章讲解:代码随想录|226.翻转二叉树
视频讲解:听说一位巨佬面Google被拒了,因为没写出翻转二叉树 | LeetCode:226.翻转二叉树
思路
把每一个节点的左右孩子交换一下,就可以达到整体翻转的效果
前序遍历:先交换左右孩子节点,再反转左子树,反转右子树
后序遍历:先反转左子树,右子树,再交换左右孩子节点
中序遍历:先反转左子树,再交换左右孩子节点,再反转右子树,相当于是只反转了两次左子树
因此最好用前序和后序遍历,用中序遍历的话还需要改一处代码
代码
前序遍历
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
swap(root->left, root->right); // 中
invertTree(root->left); // 左
invertTree(root->right); // 右
return root;
}
};
后序遍历
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
invertTree(root->left); // 左
invertTree(root->right); // 右
swap(root->left, root->right); // 中
return root;
}
};
中序遍历
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
invertTree(root->left); // 左
swap(root->left, root->right); // 中
invertTree(root->left); // 右 中序遍历是root->left是原来的右
return root;
}
};
101. 对称二叉树
题目链接:101. 对称二叉树
文章讲解:代码随想录|101. 对称二叉树
视频讲解:新学期要从学习二叉树开始! | LeetCode:101. 对称二叉树
思路
其实是比较根节点的左右子树是不是互相翻转的,在递归遍历的过程也要同时遍历两棵树,比较两个子树的内侧和外侧元素是否相等
每一次递归是判断一层里其中两个节点的外侧子节点和里侧子节点是否相等
代码
class Solution {
public:
bool compare(TreeNode* left, TreeNode* right) {
// 首先排除空节点的情况
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
// 排除了空节点,再排除数值不相同的情况
else if (left->val != right->val) return false;
// 此时就是:左右节点都不为空,且数值相同的情况
// 此时才做递归,做下一层的判断
bool outside = compare(left->left, right->right); // 左子树:左、 右子树:右
bool inside = compare(left->right, right->left); // 左子树:右、 右子树:左
bool isSame = outside && inside; // 左子树:中、 右子树:中 (逻辑处理)
return isSame;
}
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
return compare(root->left, root->right);
}
};
今日收获
迭代法后面也要掌握
二叉树题目确定遍历顺序特别重要!