669. 修剪二叉搜索树
题目链接:669. 修剪二叉搜索树
文章讲解:代码随想录|669. 修剪二叉搜索树
视频讲解:669. 修剪二叉搜索树
思路
对根结点 root进行深度优先遍历。
对于当前访问的结点,如果结点为空结点,直接返回空结点;
如果结点的值小于 low那么说明该结点及它的左子树都不符合要求,我们返回对它的右结点进行修剪后的结果;如果结点的值大于high,那么说明该结点及它的右子树都不符合要求,我们返回对它的左子树进行修剪后的结果;
如果结点的值位于区间 [low,high],我们将结点的左结点设为对它的左子树修剪后的结果,右结点设为对它的右子树进行修剪后的结果
修剪二叉搜索树 相较于 450.删除二叉搜索树中的节点来说,考虑的情况更少,因为只要该节点不在范围内,那么其左/右子树也就不在范围内。
代码
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root == nullptr) return nullptr;
if(root->val < low) return trimBST(root->right, low, high);
else if(root->val > high) return trimBST(root->left, low, high);
else{
root->left = trimBST(root->left, low, high);
root->right = trimBST(root->right, low, high);
return root;
}
}
};
108.将有序数组转换为二叉搜索树
题目链接:108.将有序数组转换为二叉搜索树
文章讲解:代码随想录|108.将有序数组转换为二叉搜索树
思路
一般构造二叉树都是从中间位置取值作为节点元素,构造平衡树是自然而然的事,想构成不平衡的二叉树是自找麻烦
这题本质是寻找分割点,分割点作为当前节点,然后递归左区间和右区间
在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组
代码
class Solution {
private:
TreeNode* traversal(vector<int>& nums, int left, int right) {
if (left > right) return nullptr;
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1);
return root;
}
};
538.把二叉搜索树转换为累加树
题目链接:538.把二叉搜索树转换为累加树
文章讲解:代码随想录|538.把二叉搜索树转换为累加树
思路
看成有序数组:[1,2,3,4,5,6]
从后向前依次累加,当前数字等于上一个数字加上自己
放在二叉树中从后向前遍历也就是右中左顺序,并用pre节点记录前一个节点来方便累加
代码
class Solution {
private:
int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur) { // 右中左遍历
if (cur == NULL) return;
traversal(cur->right);
cur->val += pre;
pre = cur->val;
traversal(cur->left);
}
public:
TreeNode* convertBST(TreeNode* root) {
pre = 0;
traversal(root);
return root;
}
};